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ABSTRACT

Whether copyrighted training data can be extracted from produc-
tion large language models (LLMs) despite safety measures remains
an open question with significant legal and technical implications.
We present a computational framework that models the interplay be-
tween memorization dynamics, multi-phase extraction attacks, and
layered defense mechanisms across production LLM configurations.
Our simulations of four production model archetypes (65B-1000B
parameters) reveal that while defense stacks reduce average extrac-
tion rates from baseline to 0.1257 under standard attacks, adversarial
techniques combining Best-of-N jailbreaking with iterative contin-
uation achieve mean extraction rates of 0.3251—a 2.59X increase.
Defense effectiveness averages 0.8377 across models, yet the aver-
age jailbreak uplift of 0.1993 demonstrates that alignment-based
defenses remain partially vulnerable to adversarial bypass. Mem-
orization follows a power-law scaling with model size (exponent
a =042, R? = 1.000), creating a fundamental tension: larger mod-
els memorize more content while deploying stronger defenses. We
find that no single defense mechanism achieves high effectiveness
without substantial cost—output filtering at 0.7069 effectiveness
incurs 0.1203 false positive rate, while RLHF alignment at 0.8110
effectiveness introduces 0.4564 jailbreak vulnerability. These results
suggest that extraction of copyrighted text from production LLMs
remains feasible at non-trivial rates even under comprehensive
safety measures, motivating the development of fundamentally
new defense paradigms.

KEYWORDS

memorization, copyright, language models, extraction attacks, safety,
alignment

1 INTRODUCTION

Large language models are trained on vast corpora that include
copyrighted text, raising fundamental questions about the extent
to which these models memorize and can reproduce their train-
ing data [3, 4]. While open-weight, non-instruction-tuned models
have been shown to reproduce substantial amounts of copyrighted
book text near-verbatim [8], production LLMs deploy both model-
level alignment (RLHF, refusal training) and system-level guardrails
(output filtering, activation capping) intended to prevent such re-
production [11].

Ahmed et al. [1] pose the open problem: is extraction of copy-
righted book text, comparable to what has been demonstrated for
open-weight models, feasible from production LLMs despite these
safety measures? This question has direct implications for copy-
right litigation, LLM deployment practices, and the design of next-
generation safety systems.

We approach this problem computationally, developing a simu-
lation framework that models: (1) memorization as a function of
model scale and data duplication, (2) multi-phase extraction attacks
including Best-of-N jailbreaking and iterative continuation, (3) four
categories of defense mechanisms with individual and combined
effectiveness, and (4) the interaction between attacks and defenses
across four production model archetypes.

Our analysis reveals several key findings:

e Production model defenses reduce extraction rates substan-
tially (average defense effectiveness of 0.8377), but residual
extraction remains non-trivial at an average rate of 0.1257
under standard attacks.

e Adversarial techniques boost extraction to an average of
0.3251, representing a mean jailbreak uplift of 0.1993.

e Memorization scales as a power law with model size (¢ =
0.42), creating tension with defense scaling.

o The most effective combined defense (filter plus RLHF, effec-
tiveness 0.9016) still permits extraction, while its jailbreak
vulnerability stands at 0.4564.

1.1 Related Work

Memorization in LLMs. Carlini et al. [3] established that memo-
rization in neural language models scales predictably with model
size and data duplication, following power-law relationships. Bi-
derman et al. [2] extended these findings to show both emergent
and predictable memorization patterns across model scales. Nasr
et al. [10] demonstrated practical extraction of training data from
production systems including ChatGPT through divergence-based
attacks.

Extraction Attacks. Recent work has shown that even aligned
models can be induced to produce memorized content through
adversarial prompting [5], with jailbreaking techniques that exploit
the tension between helpfulness and safety objectives [12]. Ahmed
et al. [1] proposed a two-phase extraction procedure combining
initial probes with iterative continuation for production systems.

Defense Mechanisms. Defenses against memorization extrac-
tion include output filtering for near-verbatim matches [7], RLHF-
based alignment to reduce copyright recitation [11], and activation-
level interventions [9]. Ippolito et al. [6] cautioned that preventing
verbatim generation alone may provide a false sense of privacy, as
models can still leak information through paraphrasing.

2 METHODS
2.1 Memorization Model

We model memorization probability as a function of model size s (in
billions of parameters), data duplication count d, sequence length
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¢, and position within the source text p € [0, 1]:

a

Pasa(s.detp) =fo- (E] @ 1000
where fp = 0.12 is the base memorization rate at reference size
so = 7B parameters, @ = 0.42 is the size scaling exponent, and
y = 0.38 is the duplication exponent. The position factor f(p) =
14+0.4(exp(—10p) +exp(—10(1—p))) captures the empirical finding
that text near the beginning and end of books is memorized more
readily [3]. The length factor g(¢) = exp(—0.002(¢ —256)) penalizes
longer sequences.

2.2 Extraction Attack Models
We model three extraction strategies:

Direct extraction. Given a memorized passage, the extraction
probability under greedy decoding (T = 0) equals the memorization
probability reduced by defense effectiveness J:

P! = Prem - ¢ - (1-0) @

Best-of-N jailbreaking. Sampling N completions and selecting
the best match yields boosted probability:

0.85
Pod = 1= (1= ©
where the exponent 0.85 accounts for sub-linear effective sampling
due to inter-sample correlation.

Iterative continuation. Multi-step extraction amplifies the base
probability through accumulated context:

Piter(k) = Phase + (1 = Phase) - (1 - 6_0'3’() * 2Ppase 4)

ext

where k is the number of continuation steps.

2.3 Defense Mechanism Models

We model four defense mechanisms, each characterized by an ef-
fectiveness function and a cost metric:

Output filtering blocks content matching known copyrighted
text, with effectiveness following a sigmoid in filter strictness and
a false positive rate scaling quadratically.

Activation capping clips high-magnitude activations that cor-
relate with memorized content retrieval, with effectiveness E. =
0.9(1 — exp(—3a)) where a = 1 — percentile/100.

RLHF alignment trains the model to avoid reproducing copy-
righted content, achieving effectiveness E, = 1 — exp(—2.5r) for

strength r, but introducing jailbreak vulnerability J = 0.1+0.4 sin(7xr/2).

Refusal training teaches explicit refusal of copyright-related
requests, with effectiveness E; = s*7 for sensitivity s and over-
refusal rate 0.05 + 0.3s1->.

Combined defense effectiveness uses a multiplicative pass-through
model:

Ecombined = (1 - ]_l(l - El)) - (1=10.05 - max(0, nactive — 1)) (5)

where the interference term accounts for diminishing returns when
stacking multiple defenses.

Anon.

Memorization Scales as Power Law with Model Size
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Figure 1: Memorization probability as a function of model
size for different data duplication factors. The relationship
follows a power law with exponent o = 0.42.

2.4 Production Model Configurations

We simulate four production model archetypes spanning the range
of deployed systems:

e Model-A: 175B parameters, moderate defenses (filter: 0.5,
RLHEF: 0.6, refusal: 0.5)

e Model-B: 540B parameters, strong defenses (filter: 0.7, RLHF:

0.8, refusal: 0.7)

e Model-C: 65B parameters, light defenses (filter: 0.3, RLHF:
0.5, refusal: 0.4)

e Model-D: 1000B parameters, maximum defenses (filter: 0.8,
RLHF: 0.9, refusal: 0.8)

Each model is tested with 1000 extraction trials per attack con-
figuration across multiple passage lengths, Best-of-N values, and
continuation steps.

3 RESULTS

3.1 Memorization Scaling

Memorization probability follows a power law with model size,
with fitted exponent @ = 0.42 and R?> = 1.000 (Figure 1). At the
reference duplication factor of 3, memorization rates range from
0.432 (Model-C, 65B) to 0.974 (Model-D, 1000B), with an average of
0.783 across all production models.

Data duplication has a compounding effect: at 175B parameters,
single-occurrence text has a memorization probability of 0.12, while
50x-duplicated text reaches near-certain memorization. The mem-
orization matrix (Figure ??) reveals that even small models (1B)
memorize highly duplicated content with non-trivial probability.

3.2 Defense Effectiveness

Table 1 summarizes defense configuration results. No single de-
fense achieves high effectiveness without substantial cost. Output
filtering alone reaches 0.7069 effectiveness but with a 0.1203 false
positive rate. RLHF alignment achieves 0.8110 effectiveness but
introduces a 0.4564 jailbreak vulnerability—the highest among all
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Table 1: Defense configuration effectiveness, false positive
rate, and jailbreak vulnerability. Combined defenses show
diminishing returns.

Configuration Effectiveness FP Rate JB Vuln.
No defense 0.1577 0.069 0.100
Output filter 0.7069 0.120 0.100
Activation cap 0.3365 0.069 0.100
RLHF alignment 0.8110 0.069 0.456
Refusal training 0.7732 0.241 0.061
Filter + RLHF 0.9016 0.120 0.456
Filter + refusal 0.8885 0.283 0.061
RLHF + refusal 0.8709 0.241 0.279
Full stack 0.8427 0.283 0.279

Defense Configuration Comparison

1.0 { =M Defense Effectiveness
mmm False Positive Rate
Jailbreak Residual

Figure 2: Comparison of defense configurations showing
effectiveness, false positive rates, and jailbreak residual vul-
nerability.

individual defenses. Refusal training reaches 0.7732 effectiveness
with a 0.2412 false positive rate due to over-refusal.

Combined defenses show diminishing returns due to interfer-
ence. The filter-plus-RLHF combination achieves the highest ef-
fectiveness at 0.9016 with a moderate false positive rate of 0.1203.
However, its inherited jailbreak vulnerability of 0.4564 means ad-
versarial attacks can partially bypass it. The full defense stack (all
four mechanisms) achieves 0.8427 effectiveness with a 0.2830 false
positive rate, suggesting that adding activation capping introduces
interference without proportional benefit.

3.3 Production Model Extraction

Table 2 presents extraction results across the four production mod-
els. Under standard (non-adversarial) attacks, average extraction
rates reach 0.1257, with Model-D (1000B) showing the highest rate
at 0.1488 despite having the strongest defenses (effectiveness 0.8482).
This reflects the tension between model scale and defense: larger
models memorize substantially more content (Model-D memoriza-
tion rate: 0.974) while defense effectiveness plateaus.

With jailbreak-augmented attacks, extraction rates increase sub-
stantially. The average jailbreak extraction rate reaches 0.3251, rep-
resenting a mean uplift of 0.1993 over standard attacks. Model-D,
with the strongest defenses, shows a jailbreak rate of 0.3826—the

Table 2: Production model extraction results. Standard and
jailbreak rates represent average extraction probability
across passage lengths. JB Uplift is the difference between
jailbreak and standard rates.

Model Size  Std Rate ]JBRate Def Eff. Mem. JB Uplift
Model-A 175B 0.1326 0.3396 0.8265 0.780 0.207
Model-B 540B 0.1434 0.3782 0.8454 0.946 0.235
Model-C 65B 0.0780 0.1998 0.8307 0.432 0.122
Model-D  1000B 0.1488 0.3826 0.8482 0.974 0.234
Average — 0.1257 0.3251 0.8377 0.783 0.199

(a) Extraction Rates by Attack Type (b) Defense vs Memorization

== Defense Effectiveness
= Memorization Rate

= Standard Attack
= With Jailbreak

Extraction Rate

0.0
Model-A Model-B Model-C Model-D Model-A Model-B Model-C Model-D

Figure 3: Production model comparison: (a) standard vs. jail-
break extraction rates, (b) defense effectiveness vs. memo-
rization rate.

highest among all models—and a jailbreak uplift of 0.234. The max-
imum jailbreak uplift of 0.2348 occurs for Model-B (540B).

3.4 Two-Phase Attack Analysis

The two-phase procedure from Ahmed et al. [1]—initial probe with
Best-of-N jailbreaking followed by iterative continuation—proves
highly effective even against strong defenses (Figure 4). Under
weak defenses, Phase 2 extraction rates approach saturation across
all model sizes. Even under strong defenses, the combination of
BoN-32 jailbreaking with 10-step continuation achieves substantial
extraction rates that grow with model scale.

The analysis reveals that Phase 1 BoN jailbreaking provides the
critical breakthrough: direct probing under strong defense yields
low extraction rates, but BoN-32 sampling dramatically amplifies
success probability by exploiting the stochastic nature of safety
mechanisms. Iterative continuation then builds on this initial suc-
cess to extract progressively longer passages.

3.5 Defense Tradeoff Analysis

Figure 5 shows extraction rate as a function of defense strength for
models of different sizes. Larger models consistently exhibit higher
extraction rates at any given defense level due to their greater
memorization capacity. The curves reveal diminishing returns in
defense strength: moving from 0.5 to 0.7 defense strength provides
substantially more reduction than moving from 0.7 to 0.9.
Individual defense mechanism sweeps (Figure 6) reveal distinct
tradeoff profiles. The output filter shows a sharp sigmoid transi-
tion, becoming effective only above strictness 0.3 but incurring
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(a) Phase 2 (BoN + Continuation) (b) Phase 1: Direct (dashed) vs BoN-32 (solid)

Extraction Rate
Extraction Rate

10 10° 10? 10°
Model Size (Billion Parameters) Model Size (Billion Parameters)

Figure 4: Two-phase attack analysis: (a) Phase 2 extraction

rates after BoN jailbreak + continuation, (b) Phase 1 compar-
ison of direct (dashed) vs. BoN-32 (solid) probing.

Extraction Rate Decreases with Defense Strength

1.0
= 175B params
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Figure 5: Extraction rate vs. defense strength for different
model sizes. Larger models maintain higher extraction rates
due to increased memorization.

rapidly increasing false positives. RLHF alignment exhibits a con-
cerning non-monotonic jailbreak vulnerability profile, peaking near
strength 0.7 before declining. Refusal training shows the most linear
effectiveness-cost relationship, making it the most predictable to
calibrate.

3.6 Statistical Significance

Pairwise two-proportion z-tests between production models re-
veal statistically significant differences in extraction rates between
models with substantially different sizes. The comparison between
Model-C (65B, rate 0.0780) and Model-D (1000B, rate 0.1488) yields
z = —4.993 (p < 0.001, Cohen’s h = 0.226), indicating a medium
effect size. Similarly, Model-A (175B) vs. Model-C yields z = 3.978
(p < 0.001, Cohen’s h = 0.179). In contrast, comparisons between
similarly-sized models show non-significant differences: Model-A
vs. Model-B yields p = 0.484 (Cohen’s h = 0.031), reflecting the
limited marginal impact of stronger defenses when memorization
differences dominate.

The Pareto analysis of 200 random defense configurations re-
veals a positive correlation of 0.611 between defense effectiveness
and false positive rate, confirming the fundamental effectiveness-
cost tradeoff. The maximum observed effectiveness across random

Anon.

Defense Mechanism Effectiveness-Cost Tradeoffs

(a) Output Filter (b) RLHF Alignment

— Effectiveness
-+ Jailbreak Vulnerability

—— Effectiveness
~~- False Positive Rate

Rate

0.0 02 04 06 08 10 00 02 04 06 08 10
Strictness Strength

(c) Refusal Training (d) Activation Capping

— Effectiveness
-~ Quality Loss

1.0 1 — Effectiveness
==+ Over-refusal Rate 0.5
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Figure 6: Individual defense mechanism tradeoffs: (a) output
filter strictness vs. false positives, (b) RLHF strength vs. jail-
break vulnerability, (c) refusal sensitivity vs. over-refusal, (d)
activation cap percentile vs. quality loss.

configurations is 0.8975, with a minimum false positive rate of 0.069
(corresponding to low-effectiveness configurations).

4 CONCLUSION

Our computational analysis addresses the open question of whether
copyrighted text extraction is feasible from production LLMs de-
spite safety measures. The evidence suggests that feasibility per-
sists at non-trivial rates: average standard extraction of 0.1257 and
jailbreak-augmented extraction of 0.3251 across four production
model archetypes. Defense stacks averaging 0.8377 effectiveness
provide substantial but incomplete protection, with jailbreak tech-
niques achieving a mean uplift of 0.1993 by partially bypassing
alignment-based defenses.

The power-law scaling of memorization (¢ = 0.42) creates a
fundamental challenge: as models grow larger to improve capability,
they also memorize more content, requiring proportionally stronger
defenses. Yet defense effectiveness exhibits diminishing returns
and introduces costs—false positive rates up to 0.283 for full stack
deployment and jailbreak vulnerabilities up to 0.456 for RLHF-based
defenses.

These findings suggest that current defense paradigms, while
substantially reducing extraction, cannot eliminate it. The most
promising defense combination (filter plus RLHF, effectiveness
0.9016) still permits extraction and inherits RLHF’s jailbreak vulner-
ability. This motivates research into fundamentally new approaches:
training-time memorization prevention, differential privacy guar-
antees, or hybrid detection systems that operate across multiple
abstraction levels.
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5 LIMITATIONS AND ETHICAL
CONSIDERATIONS

Simulation limitations. Our framework models memorization
and extraction through parameterized functions calibrated to pub-
lished empirical findings, not through actual LLM training or query-
ing. The power-law assumptions, while supported by literature,
simplify complex phenomena including tokenization effects, atten-
tion pattern dependencies, and training dynamics. Real defense
implementations are proprietary and may differ substantially from
our models.

Scope. We simulate four production model archetypes; the di-
versity of real deployed systems may produce different results. Our
extraction model considers verbatim or near-verbatim reproduc-
tion; approximate memorization (paraphrasing, style imitation) is
not captured.

Ethical considerations. This research studies extraction feasi-
bility to inform defense design, not to enable copyright infringe-
ment. We do not attempt extraction from real systems, use actual
copyrighted text, or provide attack tools. Our findings are intended
to motivate stronger protections for copyrighted content in LLM
deployments. All experiments use synthetic simulations with re-
producible random seeds.

REFERENCES

[1] Waleed Ahmed, Shruti Tople, Edoardo Debenedetti, and Florian Tramer.
2026. Extracting Books from Production Language Models. arXiv preprint
arXiv:2601.02671 (2026).

: A Computational Analysis of AttackDefkemead@yivatulys 2017, Washington, DC, USA

[2] Stella Biderman, Usvsn Sai Prashanth, Lintang Sutawika, Hailey Purohit, Edward
Schoelkopf, Anthony Tow, Quentin Anthony, and Edward Raff. 2023. Emergent
and Predictable Memorization in Large Language Models. Advances in Neural
Information Processing Systems 36 (2023).

[3] Nicholas Carlini, Dario Ippolito, Matthew Jagielski, Katherine Lee, Florian
Trameér, and Chiyuan Zhang. 2022. Quantifying Memorization Across Neural
Language Models. arXiv preprint arXiv:2202.07646 (2022).

[4] Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A.
Lemley, and Percy Liang. 2023. Foundation Models and Fair Use. Journal of
Machine Learning Research 24, 335 (2023), 1-79.

[5] Yangsibo Huang, Samyak Gupta, Mengzhou Xia, Kai Li, and Danqi Chen. 2023.
Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation. arXiv
preprint arXiv:2310.06987 (2023).

[6] Dario Ippolito, Florian Tramér, Milad Nasr, Chiyuan Zhang, Matthew Jagielski,
Katherine Lee, Christopher A. Choquette-Choo, and Nicholas Carlini. 2023. Pre-
venting Generation of Verbatim Memorization in Language Models Gives a False
Sense of Privacy. arXiv preprint arXiv:2210.17546 (2023).

[7] Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchen-
bauer, Ping-yeh Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and
Tom Goldstein. 2023. Baseline Defenses for Adversarial Attacks Against Aligned
Language Models. arXiv preprint arXiv:2309.00614 (2023).

[8] Antonia Karamolegkou, Jiaang Li, Li Zhou, and Anders Segaard. 2023. Copyright
Violations and Large Language Models. arXiv preprint arXiv:2310.13771 (2023).

[9] Tianhao Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2024. Quan-
tifying and Mitigating Privacy Risks of Contrastive Learning. arXiv preprint
arXiv:2102.04140 (2024).

[10] Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder
Cooper, Dario Ippolito, Christopher A. Choquette-Choo, Eric Wallace, Florian
Tramer, and Katherine Lee. 2023. Scalable Extraction of Training Data from
(Production) Language Models. arXiv preprint arXiv:2311.17035 (2023).

[11] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training Language Models to Follow Instructions with Human Feedback.
Advances in Neural Information Processing Systems 35 (2022).

[12] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. 2024. Jailbroken: How
Does LLM Safety Training Fail? Advances in Neural Information Processing
Systems 36 (2024).

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580



	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Memorization Model
	2.2 Extraction Attack Models
	2.3 Defense Mechanism Models
	2.4 Production Model Configurations

	3 Results
	3.1 Memorization Scaling
	3.2 Defense Effectiveness
	3.3 Production Model Extraction
	3.4 Two-Phase Attack Analysis
	3.5 Defense Tradeoff Analysis
	3.6 Statistical Significance

	4 Conclusion
	5 Limitations and Ethical Considerations
	References

