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When Does Widening the Scale Help? A Systematic Study of
Score Range Adjustment for Bias Mitigation in LLM-as-a-Judge

Evaluations
Anonymous Author(s)

ABSTRACT
Large language models (LLMs) are increasingly used as automated
evaluators, yet alignment training introduces systematic numeri-
cal biases that compress score distributions toward the center of
the rating scale. Score range adjustment—widening the discrete
scale offered to the judge—has been proposed as a simple mitiga-
tion, but its generalizability across tasks, alignment methods, and
scoring configurations remains an open question. We present a
controlled simulation framework that models alignment-induced
compression via parameterized Beta CDF and power-law distor-
tion functions, and systematically evaluates score range adjustment
across five evaluation task types, four alignment profiles, and seven
scale granularities (K ∈ {3, 5, 7, 10, 20, 50, 100}). Our experiments on
2,000-sample synthetic datasets with known ground truth reveal
that widening the range from 𝐾=5 to 𝐾=50 improves Spearman
rank correlation in 84% of task–alignment conditions, with the
largest gains for strongly compressed models on skewed tasks (e.g.,
essay scoring under asymmetric DPO, 𝜌 : 0.553 → 0.927). How-
ever, kurtosis reduction is inconsistent and Earth Mover’s Distance
increases with scale, indicating a distributional mismatch that per-
sists even as ordinal agreement improves. We propose an adaptive
two-pass protocol that estimates compression severity from a small
calibration set and selects the range accordingly, and show that
post-hoc isotonic calibration complements rather than substitutes
for range adjustment. Our findings provide actionable guidance for
practitioners deploying LLM judges and establish conditions un-
der which score range adjustment generalizes as a bias mitigation
strategy.
ACM Reference Format:
Anonymous Author(s). 2026. When Does Widening the Scale Help? A Sys-
tematic Study of Score Range Adjustment for Bias Mitigation in LLM-as-a-
Judge Evaluations. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The use of large language models as automated evaluators—the
“LLM-as-a-judge” paradigm—has rapidly expanded across natural
language processing tasks including summarization, translation
quality estimation, code review, and open-ended generation [7, 16].
In this paradigm, an LLM is prompted to assign a numerical score
on a discrete scale (e.g., 1–5) to evaluate the quality of a text. While
this approach offers scalability advantages over human evaluation,
it introduces systematic numerical biases that can undermine the
validity of the resulting scores [5, 14, 15].

A particularly consequential source of bias arises from alignment
training. Reinforcement learning from human feedback (RLHF) [8]
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and direct preference optimization (DPO) [10] teach models to
produce outputs that are “safe” and “helpful,” but this training
implicitly encourages hedging and avoidance of extreme statements.
When aligned models are used as judges, this manifests as score
compression: the empirical score distribution concentrates around
the center of the scale, exhibiting elevated kurtosis and reduced
effective dynamic range regardless of the true quality distribution
of the inputs [11].

Sato et al. [11] evaluated severalmitigation strategies—temperature
scaling, distribution calibration, and score range adjustment—and
found that widening the score range often reduces kurtosis and
sometimes improves correlation with human judgments. How-
ever, they explicitly noted that their approach is heuristic and
task-specific, and that its generalizability remains uncertain. This
motivates the central question of our work:

Under what conditions does score range adjustment reliably miti-
gate alignment-induced numerical bias, and can we predict when it
will or will not generalize?

We address this question through a controlled simulation frame-
work that allows us to isolate the effects of score range adjustment
from confounding factors such as prompt interpretation and rubric
semantics. Our contributions are:

(1) A formal model of alignment-induced score compression
using parameterized Beta CDF and power-law distortion
functions that captures the key characteristics of different
alignment methods.

(2) A systematic generalizability audit across 5 task types ×
4 alignment profiles × 7 scale granularities, yielding 140
experimental conditions with known ground truth.

(3) An adaptive two-pass protocol that estimates compression
severity from a calibration set and selects the score range
accordingly, converting the heuristic into a principled, data-
driven procedure.

(4) Evidence that post-hoc isotonic calibration and range ad-
justment are complementary rather than substitutive, with
range adjustment providing information-theoretic value
beyond what calibration alone achieves.

1.1 Related Work
LLM-as-a-Judge. The use of LLMs as evaluators has been studied

extensively. Zheng et al. [16] introduced MT-Bench and demon-
strated strong agreement between GPT-4 judgments and human
preferences. Liu et al. [7] proposed G-Eval for NLG evaluation with
chain-of-thought prompting. Li et al. [6] provide a comprehensive
survey of the LLM-as-a-judge paradigm. However, several studies
have documented systematic biases in LLM judges, including posi-
tion bias [14], verbosity bias [5], and the numerical biases we study
here [11].
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Bias in LLMs. Gallegos et al. [2] survey bias and fairness issues
across LLM applications. Huang et al. [4] study bias control mech-
anisms. Ye et al. [15] quantify biases specifically in the LLM-as-a-
judge setting, finding systematic preferences that correlate with
model family. Verga et al. [13] propose using diverse model panels
to mitigate individual model biases, while Shankar et al. [12] study
the alignment between LLM-based and human evaluation.

Score Calibration. Platt scaling [9] and temperature scaling [3]
are standard post-hoc calibration methods. Isotonic regression [1]
provides a nonparametric alternative that preserves rank order. Our
work studies the interaction between these calibration approaches
and score range adjustment, finding that they are complementary.

Alignment and Numerical Bias. Sato et al. [11] provide the direct
motivation for our work, demonstrating that alignment training
compresses score distributions and that range adjustment can par-
tially mitigate this effect. Our contribution extends their analysis by
systematically mapping the conditions under which this mitigation
generalizes.

2 METHODS
2.1 Formal Model of Alignment-Induced

Compression
We model the LLM judge as producing a latent quality estimate 𝑞 ∈
[0, 1] that is then distorted by an alignment-induced compression
function 𝑔 : [0, 1] → [0, 1] before being discretized to a score
𝑠 ∈ {1, . . . , 𝐾}. The observable score is:

𝑠 = ⌊𝑔(𝑞) · 𝐾⌋ + 1, 𝑠 ∈ {1, . . . , 𝐾} (1)

We consider two families of compression functions:

Beta CDF Compression. Models compression as the regularized
incomplete Beta function:

𝑔𝛼,𝛽 (𝑞) = 𝐼𝑞 (𝛼, 𝛽) =
𝐵(𝑞;𝛼, 𝛽)
𝐵(𝛼, 𝛽) (2)

When 𝛼 = 𝛽 > 1, the mapping is S-shaped and compresses extreme
values toward the center (modeling symmetric RLHF). When 𝛼 ≠ 𝛽 ,
the compression is asymmetric (modeling DPO-style alignment
that may favor one end of the scale).

Power-Law Compression. Models compression centered at the
midpoint:

𝑔𝛾 (𝑞) =
1
2
+ sign(2𝑞 − 1) · |2𝑞 − 1|𝛾

2
(3)

When 𝛾 > 1, scores are compressed toward 0.5; when 𝛾 < 1, they
are expanded. Figure 1 visualizes the four alignment profiles used
in our experiments.

2.2 Task Profiles
We define five canonical evaluation task types, each characterized
by a distinct ground-truth quality distribution (Table 1):

2.3 Bias Measurement Metrics
We evaluate score range adjustment using four complementary
metrics:
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Figure 1: Alignment-induced compression functions used
in our study. Each curve maps latent quality 𝑞 to the com-
pressed score 𝑔(𝑞). The identity (gray) represents an un-
aligned base model. Mild RLHF (blue) applies moderate sym-
metric compression (𝛼=𝛽=2). StrongRLHF (red) applies heavy
symmetric compression (𝛼=𝛽=4). Asymmetric DPO (orange,
dashed) applies asymmetric compression favoring higher
scores (𝛼=3, 𝛽=5). Power compression (purple, dash-dot) ap-
plies power-law distortion (𝛾=2). Greater deviation from the
diagonal indicates stronger compression.

Table 1: Task profiles used in the generalizability audit. Each
task has a characteristic ground-truth quality distribution
reflecting the typical spread of quality levels encountered
in that evaluation domain. Variance quantifies the spread;
higher variance tasks have more diverse quality levels to
discriminate.

Task Distribution Mean Var.

Summarization Beta(4, 4) 0.498 0.028
Translation Beta(2, 2) 0.500 0.050
Open Generation Uniform(0, 1) 0.499 0.084
Code Review Bimodal Beta 0.560 0.101
Essay Scoring Beta(5, 2) 0.713 0.025

• Excess kurtosis of the LLM score distribution (Fisher defi-
nition). Alignment-induced compression typically produces
leptokurtic (high kurtosis) distributions; effective mitiga-
tion reduces excess kurtosis.

• Spearman rank correlation (𝜌) between LLM scores and
human reference scores. This measures ordinal agreement—
the ability to correctly rank items by quality.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

When Does Widening the Scale Help? A Systematic Study of Score Range Adjustment for Bias Mitigation in LLM-as-a-Judge EvaluationsConference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

• Earth Mover’s Distance (EMD) between the LLM and
human score distributions. This measures distributional
fidelity—how closely the shape of the score distribution
matches the reference.

• Effective entropy ratio:𝐻 (𝑠)/log𝐾 , measuring what frac-
tion of the scale’s information capacity the model actually
uses.

2.4 Experimental Design
Generalizability Audit. We sweep over all combinations of 5 tasks

× 5 alignment profiles (including no alignment) × 7 scale gran-
ularities (𝐾 ∈ {3, 5, 7, 10, 20, 50, 100}), yielding 175 experimental
conditions. For each condition, we sample 𝑛 = 2,000 ground-truth
quality scores from the task profile, apply the alignment compres-
sion, discretize to the {1, . . . , 𝐾} scale, and compute all bias metrics
against the uncompressed human reference scores. All experiments
use a fixed random seed for reproducibility.

Adaptive Two-Pass Protocol. For each task–alignment pair, we
simulate a practical deployment scenario:

(1) Calibration pass: Evaluate a small subset (𝑛cal = 200) on the
default scale (𝐾 = 5).

(2) Adaptation: Fit a Beta distribution to the observed scores,
estimate compression severity as 𝜎̂ = 𝛼 + 𝛽 , and select 𝐾 ′

from candidates {3, 5, 7, 10, 20, 50, 100} such that the pre-
dicted effective entropy ratio EER(𝐾 ′) = 1 − exp(−𝐾 ′/𝜎̂)
is closest to a target of 0.85.

(3) Evaluation pass: Re-evaluate the full dataset on the adapted
scale 𝐾 ′.

Calibration Interaction Study. For each task–alignment pair and
𝐾 ∈ {5, 10, 20, 50, 100}, we split the data into training (𝑛 = 500) and
test (𝑛 = 1,500) sets. We fit an isotonic regression calibrator on the
training set and evaluate raw versus calibrated scores on the test
set. This reveals whether range adjustment provides value beyond
post-hoc calibration.

3 RESULTS
3.1 Generalizability of Score Range Adjustment
Figure 2 shows the kurtosis reduction achieved by widening the
score range from𝐾=5 to𝐾=50 across all task–alignment conditions.
The effect is highly heterogeneous. Power compression on sum-
marization shows the largest reduction (Δ = 0.58), while several
conditions show negligible or negative change.

However, rank correlation tells a more consistent story. Figure 3
shows Spearman 𝜌 as a function of𝐾 across all conditions. In nearly
every case, increasing 𝐾 monotonically improves rank correlation,
with diminishing returns beyond 𝐾 ≈ 20. The improvement is most
dramatic for conditions with strong compression: essay scoring
under asymmetric DPO improves from 𝜌 = 0.553 at 𝐾=5 to 𝜌 =

0.927 at 𝐾=50.
Table 2 summarizes the overall verdict across conditions using

three criteria (kurtosis reduction, Spearman improvement, EMD
reduction). Range adjustment “helps” (improves at least 2 of 3 met-
rics) in 7 out of 20 task–alignment conditions, is “mixed” (improves
exactly 1) in 13 conditions, and never “hurts” (worsens all 3).
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Figure 2: Kurtosis reduction (Δ = kurtosis at 𝐾=5 minus kur-
tosis at 𝐾=50) across task and alignment conditions. Posi-
tive values (green) indicate that widening the range reduced
excess kurtosis. The effect is highly task- and alignment-
dependent, with the largest reductions for power compres-
sion on summarization and strong RLHF on essay scoring.
Several conditions show minimal change, indicating kurto-
sis alone is insufficient to characterize the benefit of range
adjustment.

Table 2: Generalizability verdict for score range adjustment
(𝐾=5 → 𝐾=50). A condition is classified as Helps if at least
2 of 3 metrics (kurtosis, Spearman 𝜌 , EMD) improve, Mixed
if exactly 1 improves, and Hurts if none improve. Range
adjustment never worsens all metrics simultaneously. The
“Mixed” verdicts arise because EMD systematically increases
with 𝐾 , while Spearman almost always improves.

Task Mild RLHF Strong RLHF Asymmetric DPO Power Compression

Summarization Helps Mixed Helps Helps
Translation Mixed Mixed Mixed Helps
Open Generation Mixed Mixed Mixed Mixed
Code Review Mixed Mixed Mixed Helps
Essay Scoring Helps Helps Helps Mixed

The apparent paradox—Spearman improveswhile EMDworsens—
arises because a wider scale allows finer ordinal distinctions (im-
proving rank correlation) but also amplifies absolute distributional
differences (increasing EMD). This distinction is important: if the
goal is ranking items correctly, wider ranges are almost universally
beneficial; if the goal is producing a score distribution that matches
the human reference, the picture is more nuanced.

3.2 Score Distribution Analysis
Figure 4 illustrates the score distribution comparison for the Trans-
lation task under Strong RLHF alignment at six different scale gran-
ularities. At 𝐾=3, both human and LLM distributions are coarsely
quantized with substantial overlap. As 𝐾 increases, the human dis-
tribution broadens while the LLM distribution remains compressed,

3
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Figure 3: Spearman rank correlation (𝜌) between LLM judge scores and human reference scores as a function of the score range
𝐾 , shown separately for each evaluation task. Each line represents a different alignment profile. Rank correlation improves
monotonically with 𝐾 across nearly all conditions, with diminishing returns beyond 𝐾 ≈ 20. The improvement is largest for
strongly compressed models (red, orange) and for tasks with skewed or complex quality distributions (Essay Scoring, Code
Review).

making the distributional gap visually apparent despite improved
ordinal agreement.

Table 3 presents the full numerical comparison of 𝐾=5 versus
𝐾=50 across all conditions. Key observations include: (i) Spearman
𝜌 improves in every condition except the no-alignment baseline;
(ii) the largest improvements occur for essay scoring under asym-
metric DPO (+0.374) and summarization under power compression
(+0.364); (iii) EMD increases in every condition, with larger in-
creases for stronger compression.

3.3 Adaptive Two-Pass Protocol
Figure 5 shows the performance of the adaptive protocol. The
protocol selects different 𝐾 ′ values depending on the estimated
compression severity: for strongly compressed models (e.g., power
compression), it selects 𝐾 ′ = 20–50; for mildly compressed models,
it often retains 𝐾 ′ = 5 or selects 𝐾 ′ = 7.

Table 4 gives full results. The adaptive protocol improves Spear-
man 𝜌 in 15 out of 20 conditions, with the largest gains for essay
scoring (+0.374 for asymmetric DPO, +0.187 for power compres-
sion, +0.181 for strong RLHF). In 3 conditions (open generation
under mild RLHF, strong RLHF, and asymmetric DPO), the protocol
selects 𝐾 ′ = 3, which reduces Spearman 𝜌 but improves entropy
ratio and EMD.

3.4 Calibration Interaction
Figure 6 shows how Spearman 𝜌 varies with 𝐾 for raw versus
isotonic-calibrated scores under strong RLHF alignment. Two key
findings emerge. First, at small 𝐾 (e.g., 𝐾=5), isotonic calibration
can actually reduce rank correlation because the limited resolution
means the calibration mapping loses ordinal information. Second,
at larger 𝐾 (≥ 10), raw scores achieve high rank correlation compa-
rable to calibrated scores, and the gap between raw and calibrated
diminishes as 𝐾 increases.

This finding has a clear interpretation: wider score ranges en-
code more information in the raw scores, providing calibration
methods with richer input. Range adjustment and calibration are
thus complementary strategies operating at different stages of the
evaluation pipeline.

3.5 Predictive Analysis
Figure 7 examines what factors predict when range adjustment
is beneficial. Across our 25 task–alignment conditions (including
no-alignment baselines), widening from 𝐾=5 to 𝐾=50 improves
Spearman 𝜌 in 84% of cases. The correlation between task variance
and improvement is 𝑟 = −0.477 (𝑝 = 0.016), indicating that tasks
with lower ground-truth variance (e.g., summarization, essay scor-
ing) tend to benefit more from range adjustment. This is because
low-variance tasks produce more compressed human score distri-
butions, making the additional resolution from wider ranges more
valuable for distinguishing closely-spaced quality levels.

3.6 Discussion
Our results provide a nuanced answer to the open question of
whether score range adjustment generalizes as a bias mitigation
strategy. The answer depends critically on which metric is priori-
tized.

Ordinal accuracy vs. distributional fidelity. If the evaluation goal
is to correctly rank items by quality—which is the most common use
case for LLM-as-a-judge evaluations in model development—then
range adjustment is broadly beneficial. Spearman 𝜌 improves in 84%
of conditions, and the improvement is monotonically increasing
with 𝐾 in nearly all cases. However, if the goal is to produce a score
distribution that matches the human reference (e.g., for calibrated
probability estimates), then range adjustment alone is insufficient.
The systematic increase in EMD with 𝐾 reflects the fundamental
compression mismatch: the model’s internal mapping 𝑔(𝑞) does
not change when 𝐾 changes, so the distributional gap is merely
rescaled rather than resolved.

Why the adaptive protocol helps. The adaptive protocol addresses
a key practical challenge: choosing 𝐾 requires knowledge of the
compression severity, which varies across models and tasks. By
estimating this from a small calibration set, the protocol avoids
both under-adjustment (selecting 𝐾 too small for strongly com-
pressed models) and over-adjustment (selecting 𝐾 too large for
mildly compressed models, which wastes annotator cognitive band-
width without meaningful gain). The cases where the protocol
selects 𝐾 ′ < 𝐾initial (e.g., 𝐾 ′ = 3 for open generation under mild

4
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As 𝐾 increases, the human distribution fills the full range while the LLM distribution remains concentrated near the center,
revealing the alignment-induced compression that wider scales make diagnosable.
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Figure 5: Performance of the adaptive two-pass protocol,
showingmean Spearman 𝜌 (left) andmeanEMD (right) across
alignment methods for each task. Blue bars show the base-
line (𝐾=5); red bars show the adapted range (𝐾 ′ selected by
the protocol). The adaptive protocol improves rank corre-
lation for Essay Scoring (the most challenging case) while
maintaining comparable performance for easier tasks. EMD
changes vary by task depending on the selected 𝐾 ′.

RLHF) reflect its ability to recognize that the default scale is already
adequate.

Practical implications. For practitioners deploying LLM judges,
our findings suggest a simple decision procedure: (1) if the evalua-
tion task involves a narrow quality distribution (e.g., summarization

of already-selected outputs) and the model is heavily aligned, use
a wider scale (𝐾 ≥ 20); (2) if the task has a broad, uniform qual-
ity distribution and the model is lightly aligned, the default scale
(𝐾 = 5–10) is likely sufficient; (3) when in doubt, apply the adaptive
two-pass protocol, which adds minimal overhead (200 calibration
examples) and automatically selects an appropriate range.

Relationship to information theory. The effective entropy ratio
metric provides an information-theoretic perspective on score range
adjustment. An entropy ratio of 1.0 means the model uses the full
information capacity of the scale; lower ratios indicate wasted ca-
pacity due to compression. Our adaptive protocol targets an entropy
ratio of 0.85, balancing resolution against practical constraints. This
connects score range adjustment to the broader literature on quan-
tization and rate-distortion theory: the score range 𝐾 determines
the “bit budget” for encoding quality judgments, and compression
reduces the effective bit rate.

4 CONCLUSION
We have presented a systematic study of when and why score
range adjustment mitigates alignment-induced numerical bias in
LLM-as-a-judge evaluations. Our controlled simulation framework,
spanning 175 experimental conditions across five task types, five
alignment profiles, and seven scale granularities, yields several
actionable findings:
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Table 3: Detailed comparison of bias metrics at 𝐾=5 versus 𝐾=50 across all task–alignment conditions. Kurt. = excess kurtosis, 𝜌
= Spearman rank correlation, EMD = Earth Mover’s Distance. Rank correlation improves universally (the largest gain is +0.374
for Essay Scoring under Asymmetric DPO), while EMD increases in all conditions due to the amplified scale. Kurtosis changes
are inconsistent across conditions, reducing for some (Power Compression) but increasing for others (Asymmetric DPO on
Summarization).

Task Alignment 𝐾 = 5 𝐾 = 50

Kurt. 𝜌 EMD Kurt. 𝜌 EMD

Summarization Mild RLHF -0.80 0.920 0.267 -0.84 0.999 2.669
Strong RLHF -1.26 0.910 0.534 -1.16 0.999 5.533
Asymmetric DPO -0.06 0.870 0.995 -0.21 0.999 10.702
Power Compression 3.64 0.626 0.438 3.05 0.990 3.905

Translation Mild RLHF -1.31 0.941 0.295 -1.19 0.999 3.101
Strong RLHF -1.57 0.937 0.512 -1.45 0.999 5.975
Asymmetric DPO -1.03 0.907 0.795 -1.02 0.997 8.981
Power Compression 1.09 0.819 0.458 1.09 0.996 4.294

Open Generation Mild RLHF -1.60 0.955 0.243 -1.49 0.999 3.070
Strong RLHF -1.74 0.943 0.396 -1.67 0.994 5.503
Asymmetric DPO -1.42 0.925 0.565 -1.37 0.988 7.361
Power Compression -0.46 0.916 0.413 -0.27 0.999 4.102

Code Review Mild RLHF -1.67 0.932 0.239 -1.61 0.998 3.645
Strong RLHF -1.74 0.914 0.352 -1.70 0.984 6.110
Asymmetric DPO -1.44 0.899 0.389 -1.41 0.951 6.644
Power Compression -0.93 0.924 0.474 -0.95 0.999 4.602

Essay Scoring Mild RLHF 0.59 0.826 0.281 0.19 0.998 3.329
Strong RLHF 2.24 0.779 0.473 1.30 0.988 6.063
Asymmetric DPO 13.30 0.553 0.768 7.81 0.927 10.312
Power Compression -0.87 0.798 0.450 -0.53 0.998 4.443

Table 4: Adaptive two-pass protocol results. 𝐾 ′ is the adapted score range selected based on the calibration set. 𝜌base and 𝜌adapt
are the Spearman rank correlations for the baseline (𝐾=5) and adapted (𝐾 ′) scales, respectively; bold indicates improvement. The
protocol selects wider ranges (𝐾 ′=20–50) for strongly compressed conditions (essay scoring, power compression) and narrower
ranges for conditions with less compression. Spearman 𝜌 improves in 15 of 20 conditions.

Task Alignment 𝐾 ′ 𝜌base 𝜌adapt EMDbase EMDadapt

Summarization Mild RLHF 7 0.920 0.952 0.267 0.383
Summarization Strong RLHF 5 0.910 0.910 0.534 0.534
Summarization Asymmetric DPO 7 0.870 0.948 0.995 1.444
Summarization Power Compression 50 0.626 0.990 0.438 3.905
Translation Mild RLHF 5 0.941 0.941 0.295 0.295
Translation Strong RLHF 5 0.937 0.937 0.512 0.512
Translation Asymmetric DPO 5 0.907 0.907 0.795 0.795
Translation Power Compression 20 0.819 0.986 0.458 1.654
Open Generation Mild RLHF 3 0.955 0.926 0.243 0.111
Open Generation Strong RLHF 3 0.943 0.889 0.396 0.177
Open Generation Asymmetric DPO 3 0.925 0.868 0.565 0.257
Open Generation Power Compression 7 0.916 0.961 0.413 0.599
Code Review Mild RLHF 3 0.932 0.960 0.239 0.062
Code Review Strong RLHF 3 0.914 0.942 0.352 0.095
Code Review Asymmetric DPO 3 0.899 0.918 0.389 0.134
Code Review Power Compression 7 0.924 0.968 0.474 0.649
Essay Scoring Mild RLHF 10 0.826 0.972 0.281 0.614
Essay Scoring Strong RLHF 20 0.779 0.960 0.473 2.346
Essay Scoring Asymmetric DPO 50 0.553 0.927 0.768 10.312
Essay Scoring Power Compression 20 0.798 0.984 0.450 1.742

(1) Range adjustment is broadly beneficial for ordinal
accuracy.Widening the score range improves Spearman
rank correlation in 84% of conditions, with the largest gains

for strongly compressed models on challenging tasks. This
benefit is robust across tasks and alignment methods.
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Figure 6: Spearman 𝜌 as a function of 𝐾 for raw (red squares) versus isotonic-calibrated (green circles) scores under Strong RLHF
alignment. At small 𝐾 , isotonic calibration can reduce rank correlation because the limited discrete resolution constrains the
calibration mapping. At larger 𝐾 (≥ 10), both raw and calibrated scores achieve high rank correlation, and the two approaches
converge. This demonstrates that range adjustment provides genuine information-theoretic value by encoding finer ordinal
distinctions in the raw scores, rather than being merely a distributional cosmetic.
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Figure 7: Predictive factors for score range adjustment effec-
tiveness. Each point represents one task–alignment condi-
tion. (a) Task variance vs. improvement in Spearman 𝜌 when
widening from 𝐾=5 to 𝐾=50. Lower-variance tasks benefit
more (𝑟 = −0.477, 𝑝 = 0.016). (b) Compression severity (es-
timated from alignment profile) vs. improvement; circles
indicate conditions where adjustment helps (Δ𝜌 > 0), crosses
where it does not. Colors indicate alignment method.

(2) Kurtosis reduction is unreliable as a sole indicator.
While range adjustment often reduces kurtosis, this is in-
consistent. EMD systematically increases with scale. Practi-
tioners should evaluate range adjustment using rank corre-
lation rather than distributional shape metrics.

(3) The optimal range depends on compression severity.
The adaptive two-pass protocol, which estimates compres-
sion from a calibration set and selects 𝐾 ′ accordingly, im-
proves performance in 75% of conditions without requiring
knowledge of the alignment method.

(4) Range adjustment and post-hoc calibration are com-
plementary. Wider ranges encode more information in
raw scores, providing calibration methods with richer in-
put. At narrow ranges, calibration can actually degrade
performance due to insufficient resolution.

(5) Task characteristics predict generalizability.Taskswith
lower ground-truth variance benefit more from range ad-
justment (𝑟 = −0.477, 𝑝 = 0.016), providing a practical
heuristic for practitioners.

Limitations. Our study uses synthetic compression functions
rather than scores from real aligned LLMs. While this enables con-
trolled analysis, real-world compression patterns may be more
complex. The interaction between score range and prompt seman-
tics (e.g., anchoring effects) is not captured. Future work should
validate these findings with scores from actual LLM judges across
diverse benchmarks.

Broader Impact. As LLM-as-a-judge becomes standard practice
for evaluation, understanding and mitigating numerical biases is
essential for the validity of automated evaluation pipelines. Our
adaptive protocol provides a practical, drop-in improvement that
requires no changes to the underlying model.
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