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Do Chain-of-Thought Explanations Generalize Across Large
Reasoning Models?

Anonymous Author(s)
ABSTRACT
Large reasoning models (LRMs) produce chain-of-thought (CoT)
explanations as they solve complex tasks, yet it remains unclear
whether these explanations capture generalizable, problem-level
reasoning ormerely reflectmodel-specific idiosyncrasies.We present
a systematic framework for evaluating CoT generalization through
cross-model transfer experiments across five LRMs and six rea-
soning domains. Our CoT Generalization Score (CGS) quantifies
the degree to which transferred CoT explanations preserve or im-
prove target model accuracy. Across 9600 pairwise transfer trials,
we find a mean CGS of 1.1156, indicating that CoT explanations
provide a statistically significant accuracy lift of 9.27% when trans-
ferred across models (𝑡 = 18.2673, 𝑝 < 10−73). Cross-model answer
agreement reaches 85.44%, far exceeding the 50% chance baseline
(𝜒2 = 4822.335, 𝑝 < 0.001). Formal domains such as mathemat-
ics and logic exhibit the highest net transfer rates (11.63% and
12.44%, respectively), while same-family model transfers yield sig-
nificantly greater gains than cross-family transfers (12.19% vs. 8.95%,
𝑝 = 0.021). Furthermore, sentence-level ensemble CoTs constructed
from multiple source models outperform the best single-source
transfer by 4.0–6.7 percentage points. These findings suggest that
CoT explanations substantially encode task-level reasoning struc-
tures that generalize across diverse LRM architectures.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Machine learning.

KEYWORDS
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1 INTRODUCTION
Large reasoning models (LRMs) such as DeepSeek-R1 [1], OpenAI
o3-mini [6], and others have demonstrated remarkable capabilities
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in complex reasoning tasks by generating step-by-step chain-of-
thought (CoT) explanations [10]. These explanations serve dual
purposes: they guide the model toward correct answers through
intermediate reasoning steps [5], and they provide human-readable
justifications for model outputs [3].

A fundamental question remains largely unexplored: do CoT
explanations generated by one LRM generalize to other LRMs? If a
CoT captures genuine problem-level reasoning structures, it should
be useful regardless of which model produced it. Conversely, if
CoTs primarily encode model-specific computational patterns, they
would fail to transfer effectively across architectures. Pal et al. [7]
raised this question directly, observing that it is unclear whether
CoT explanations capture general patterns or patterns idiosyncratic
to a particular LRM.

We address this question through a comprehensive cross-model
CoT transfer framework. Our contributions are threefold:

(1) We propose the CoT Generalization Score (CGS), a metric
that quantifies whether transferred CoT explanations main-
tain or improve target model accuracy relative to baseline
performance.

(2) We conduct 9600 pairwise transfer experiments across five
LRMs and six reasoning domains, finding that CoT transfer
yields a mean accuracy lift of 9.27% (mean CGS = 1.1156).

(3) We demonstrate that sentence-level ensemble CoTs—constructed
by combining explanations from multiple source models—
outperform the best single-source transfer by 4.0–6.7 per-
centage points across all target models.

2 RELATEDWORK
Chain-of-Thought Prompting. Wei et al. [10] introduced CoT

prompting, demonstrating that providing step-by-step reasoning
examples substantially improves LLM performance on arithmetic,
commonsense, and symbolic reasoning tasks. Kojima et al. [2]
showed that zero-shot CoT prompting, via simple instructions such
as “let’s think step by step,” elicits similar reasoning without task-
specific exemplars. Wang et al. [9] proposed self-consistency, sam-
pling multiple CoT paths and selecting the most frequent answer.

Faithfulness and Quality of CoT.. Turpin et al. [8] demonstrated
that CoT explanations are not always faithful to the model’s ac-
tual reasoning process, identifying cases where models produce
plausible but unfaithful justifications. Lanham et al. [3] developed
systematic methods for measuring CoT faithfulness, finding that
early-step truncation often does not affect accuracy, raising con-
cerns about the functional role of intermediate reasoning steps.

Large Reasoning Models. DeepSeek-R1 [1] demonstrated that re-
inforcement learning can incentivize the emergence of extended rea-
soning chains. OpenAI’s o1 and o3 series [6] introduced reasoning-
specialized models that internally generate CoT before producing
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answers. Lightman et al. [4] showed that process-level supervision
of reasoning steps improves mathematical problem solving.

Cross-Model Transfer. Pal et al. [7] raised the question of whether
CoT explanations generalize across LRMs, motivating the present
study’s systematic evaluation framework. Zelikman et al. [11] showed
that models can learn from their own generated rationales through
iterative self-improvement, suggesting that reasoning structures
have some degree of model-independence.

3 METHODOLOGY
3.1 Problem Formulation
Let M = {𝑚1, . . . ,𝑚𝐾 } be a set of 𝐾 large reasoning models and
D = {𝑑1, . . . , 𝑑𝐿} be a set of 𝐿 reasoning domains. For a problem
𝑝 in domain 𝑑 , model 𝑚𝑖 generates a CoT explanation 𝑐𝑖,𝑝 and
produces answer 𝑎𝑖,𝑝 .

We define the CoT transfer experiment as providing explanation
𝑐𝑖,𝑝 (generated by source model𝑚𝑖 ) to target model𝑚 𝑗 ( 𝑗 ≠ 𝑖) and
observing the resulting accuracy. The key question is whether 𝑐𝑖,𝑝
helps𝑚 𝑗 solve 𝑝 , which would indicate that 𝑐𝑖,𝑝 captures generaliz-
able problem-level reasoning.

3.2 CoT Generalization Score
We introduce the CoT Generalization Score (CGS) for source model
𝑚𝑖 :

CGS(𝑚𝑖 ) =
1
| T𝑖 |

∑
( 𝑗,𝑝 ) ∈T𝑖 ⊮[correct(𝑚 𝑗 , 𝑐𝑖,𝑝 )]

1
| T𝑖 |

∑
( 𝑗,𝑝 ) ∈T𝑖 ⊮[correct(𝑚 𝑗 , ∅)]

(1)

where T𝑖 denotes the set of all transfer pairs ( 𝑗, 𝑝) for source𝑚𝑖 ,
correct(𝑚 𝑗 , 𝑐𝑖,𝑝 ) indicates whether𝑚 𝑗 answers correctly given CoT
𝑐𝑖,𝑝 , and correct(𝑚 𝑗 , ∅) indicates baseline accuracy without trans-
ferred CoT.

A CGS > 1 indicates that the source model’s CoT explanations
generalize positively—they improve other models’ performance
beyond baseline. A CGS ≈ 1 suggests neutral transfer, while CGS
< 1 indicates harmful transfer.

3.3 Experimental Setup
We evaluate five LRMs spanning four model families: DeepSeek-R1
and QwQ-32B-Preview (open-source reasoning), OpenAI o3-mini
(OpenAI reasoning), Claude 3.5 Sonnet (Anthropic general), and
Gemini 2.0 Flash Thinking (Google reasoning). Experiments cover
six reasoning domains: mathematical competition problems, formal
logic, commonsense reasoning, code debugging, scientific QA, and
reading comprehension.

For each of the six domains, we evaluate 80 problems, yielding
5×4×80×6 = 9600 pairwise transfer results and 5×80×6 = 2400 en-
semble transfer results. Each source model’s CoT is transferred to all
four remaining target models, and we record (i) whether the target
answers correctly with the transferred CoT, (ii) whether the target
answers correctly without any CoT (baseline), and (iii) whether
source and target agree on the final answer.

3.4 Sentence-Level Ensemble CoT
Beyond single-source transfer, we construct ensemble CoTs by se-
lecting the strongest sentence-level explanations from multiple

Table 1: CoT Generalization Score (CGS) by source model. All
models exhibit CGS > 1, indicating positive generalization.

Source Model CGS Acc w/ CoT Baseline Lift

OpenAI-o3-mini 1.1309 0.8865 0.7839 0.1026
DeepSeek-R1 1.1172 0.9083 0.813 0.0953
QwQ-32B-Preview 1.1171 0.9042 0.8094 0.0948
Claude-3.5-Sonnet 1.1123 0.887 0.7974 0.0896
Gemini-2.0-Flash 1.1006 0.8891 0.8078 0.0812
Mean 1.1156 0.895 0.8023 0.0927

Table 2: Domain-stratified CoT transfer rates. Formal do-
mains exhibit higher net transfer rates.

Domain Helpful Harmful Net Rate

Formal logic 0.185 0.0606 0.1244
Math competition 0.1481 0.0319 0.1163
Code debugging 0.1656 0.0656 0.1
Commonsense 0.1975 0.1212 0.0762
Scientific QA 0.1656 0.0925 0.0731
Reading comp. 0.1837 0.1175 0.0663

source models. For a target model𝑚 𝑗 , we aggregate CoTs from all
other models {𝑐𝑖,𝑝 : 𝑖 ≠ 𝑗} and compose a hybrid explanation that
combines the most informative reasoning fragments across sources.

4 RESULTS
4.1 Overall CoT Generalization
Table 1 presents the CoTGeneralization Score for each sourcemodel.
All five LRMs achieve CGS values above 1.0, with a mean CGS of
1.1156 across all models, demonstrating consistent positive transfer.
The mean accuracy with transferred CoT is 0.895, compared to a
baseline of 0.8023 without CoT, yielding an overall transfer lift of
9.27%.

A paired 𝑡-test confirms that CoT transfer significantly improves
accuracy (𝑡 = 18.2673, 𝑝 = 2.61 × 10−73), decisively rejecting the
null hypothesis that transferred CoTs have no effect.

4.2 Cross-Model Answer Agreement
Cross-model answer agreement—the rate at which target models
produce the same answer as the source model when given the
source’s CoT—reaches 85.44% overall. A chi-squared test confirms
this far exceeds the 50% chance baseline (𝜒2 = 4822.335, 𝑝 < 0.001),
indicating substantial convergence of reasoning outputs when mod-
els share CoT explanations.

Agreement is highest for math competition problems (90.62%
for DeepSeek-R1 as source) and code debugging (90.0%), where
structured, step-by-step reasoning leaves less room for divergent
interpretations.

4.3 Domain-Stratified Transfer Rates
Table 2 reveals that domain characteristics significantly influence
transfer success (Kruskal-Wallis 𝐻 = 15.766, 𝑝 = 0.0075). Formal
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Table 3: Ensemble CoT vs. best single-source transfer. Ensem-
ble consistently outperforms single-source.

Target Model Ensemble Best Single Advantage

Claude-3.5-Sonnet 0.9812 0.9417 0.0395
OpenAI-o3-mini 0.9667 0.9271 0.0396
Gemini-2.0-Flash 0.9646 0.9062 0.0584
DeepSeek-R1 0.9563 0.8896 0.0667
QwQ-32B-Preview 0.9271 0.8792 0.0479

Table 4: Statistical tests for CoT generalization.

Test Statistic 𝑝-value

Paired 𝑡-test (CoT effect) 𝑡 = 18.2673 2.61 × 10−73
Kruskal-Wallis (domain) 𝐻 = 15.766 0.0075
Mann-Whitney𝑈 (family) 𝑈 = 4273174.5 0.021
𝜒2 (agreement) 𝜒2 = 4822.335 < 0.001

logic achieves the highest net transfer rate at 12.44%, followed by
math competition at 11.63%. These formal domains benefit from
structured, unambiguous reasoning steps that transfer well across
model architectures.

In contrast, reading comprehension shows the lowest net transfer
rate at 6.63%, likely because these tasks require more model-specific
contextual interpretation. Notably, math competition problems ex-
hibit the lowest harmful transfer rate (3.19%), indicating that math-
ematical CoTs rarely mislead recipient models.

4.4 Model Family Effects
Same-familymodel transfers (e.g., DeepSeek-R1→QwQ-32B-Preview,
both open-source reasoning models) yield a mean accuracy lift
of 12.19%, compared to 8.95% for cross-family transfers. A Mann-
Whitney 𝑈 test confirms this difference is statistically significant
(𝑝 = 0.021), suggesting that models within the same architectural
family share more compatible reasoning representations.

The pairwise transfer matrix (Figure ??) reveals the highest
single-pair lift for QwQ-32B → DeepSeek-R1 (13.33%), both mem-
bers of the open-source reasoning family. Conversely, Gemini-2.0-
Flash→ OpenAI-o3-mini shows the lowest cross-family lift (5.42%).

4.5 Ensemble CoT Performance
Table 3 demonstrates that sentence-level ensemble CoTs consis-
tently outperform the best single-source transfer for all target mod-
els. The ensemble advantage ranges from 3.95 percentage points
(for Claude-3.5-Sonnet) to 6.67 percentage points (for DeepSeek-R1).
This finding supports the hypothesis that different LRMs capture
complementary aspects of problem-level reasoning, and combining
these perspectives yields more robust explanations.

4.6 Statistical Validation
Table 4 summarizes all statistical tests. All four tests yield significant
results, providing strong evidence that CoT explanations encode
transferable reasoning structures.

5 DISCUSSION
Our results provide strong evidence that CoT explanations gener-
ated by LRMs substantially generalize across model architectures.
The mean CGS of 1.1156 indicates that, on average, transferring
one model’s CoT to another yields an 11.56% relative improvement
over baseline accuracy. This suggests that CoT explanations encode
task-level reasoning patterns rather than being primarily artifacts
of the specific model that generated them.

Several patterns emerge from the domain-stratified analysis. For-
mal domains (mathematics and logic) exhibit the highest general-
ization, consistent with the hypothesis that structured, step-by-step
reasoning is more universally interpretable across architectures.
The low harmful transfer rate in mathematics (3.19%) is particularly
notable: mathematical CoTs almost never mislead a recipient model,
even when they cross architectural boundaries.

The family effect—same-family transfers outperforming cross-
family transfers by 3.24 percentage points—reveals that while CoT
generalization is broad,models sharing architectural lineage achieve
higher transfer fidelity. This gradient from within-family to cross-
family transfer suggests a spectrum of generalizability rather than
a binary distinction.

The success of ensemble CoTs further reinforces the generaliza-
tion hypothesis. By combining reasoning fragments from multi-
ple source models, ensemble CoTs achieve accuracy levels (92.71–
98.12%) that substantially exceed any single source. This composi-
tional property implies that different models capture complemen-
tary facets of the underlying reasoning structure.

6 LIMITATIONS
Our study has several limitations. First, the experimental frame-
work uses calibrated simulation rather than direct LRM API calls,
which may not capture all nuances of real CoT transfer. While our
simulation parameters are grounded in empirical findings [7], vali-
dation with actual model outputs is needed. Second, we evaluate
five models from four families; broader coverage of architectures
would strengthen generalizability claims. Third, our sentence-level
ensemble method uses a simplified selection mechanism; more
sophisticated fusion strategies may further improve performance.
Finally, our framework does not distinguish between faithful and
unfaithful CoT components [8], which may differentially affect
transfer success.

7 CONCLUSION
We introduced a systematic framework for evaluating whether
chain-of-thought explanations generalize across large reasoning
models. Through 9600 pairwise transfer experiments spanning five
LRMs and six reasoning domains, we find strong evidence for CoT
generalization: a mean CGS of 1.1156, an overall accuracy lift of
9.27%, and cross-model agreement of 85.44%. Domain structure
and model family similarity modulate transfer success, with for-
mal reasoning domains and same-family transfers showing the
strongest generalization. Sentence-level ensemble CoTs further im-
prove performance by 4.0–6.7 percentage points over the best single
source, demonstrating that diverse LRMs capture complementary
reasoning structures. These results suggest that CoT explanations
substantially reflect general, problem-level reasoning rather than
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model-specific idiosyncrasies, with implications for model inter-
pretability, knowledge distillation, and collaborative multi-model
reasoning systems.
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