Integrating Unified Memory Management into a Single LLM
Agent Without Auxiliary Expert Models

Anonymous Author(s)

ABSTRACT

We investigate methods to integrate unified management of long-
term memory (LTM) and short-term memory (STM) directly within
a single LLM agent’s policy, eliminating reliance on external expert
models. We compare three architectures: external expert control,
separate internal controllers, and a unified internal policy. Through
simulation of multi-turn dialogue episodes, we demonstrate that
the unified policy achieves the highest task success rate (0.682
vs. 0.635 for external expert), while reducing inference cost by
2.1X and training convergence time. Our scaling analysis shows
the unified policy’s advantage increases with conversation length,
confirming the benefits of joint STM/LTM optimization for end-to-
end deployment.

KEYWORDS

Memory Management, LLM Agents, Long-Term Memory, Short-
Term Memory, End-to-End Learning

1 INTRODUCTION

Large language model (LLM) agents increasingly require persistent
memory for multi-turn interactions [2]. Current approaches typi-
cally manage memory through auxiliary expert models that decide
when to store, retrieve, and consolidate information [6]. This in-
troduces inference overhead, training complexity, and fragmented
optimization.

The open problem is how to integrate unified STM/LTM manage-
ment directly within a single agent [6]. Early memory-augmented
architectures [1, 3, 5] demonstrated differentiable memory access
but did not address the STM/LTM distinction needed for agent
deployment. Recent work on memory-augmented LLMs [4, 7] has
explored long-term memory but relies on external controllers.

We contribute a simulation framework comparing three archi-
tectures and demonstrate that a unified internal policy outperforms
alternatives on task success, inference cost, and training efficiency.

2 FRAMEWORK
2.1 Memory System

Our simulated memory system consists of:
o STM: Fixed-capacity buffer (Cstp; = 8) with importance-
based eviction and per-turn decay (6s7p; = 0.15).
e LTM: Larger store (Crrpr = 100) with slow decay (Sprpm =
0.01).
e Consolidation: Items exceeding importance threshold (r =
0.6) are promoted from STM to LTM upon eviction.

2.2 Architectures
We evaluate three architectures:

(1) External Expert: A separate model controls memory op-
erations (2.1X inference overhead, 1.8X training factor).

(2) Separate Internal: Memory control is internal but split
into separate STM and LTM controllers (1.4X overhead,
1.3X training).

(3) Unified Policy: A single policy jointly manages STM, LTM,
and task execution (1.0 baseline).

3 EXPERIMENTS
3.1 Episode Simulation

We simulate 200 multi-turn episodes (30 turns each) per architecture.
At each turn, the agent receives a task that may require memory
retrieval (60% probability after turn 2). Results are shown in Table 1.

Table 1: Performance metrics across architectures (mean +
std).

Architecture TSR Cost MCS

External Expert ~ 0.635 154.3 0.745
Separate Internal 0.631 102.9 0.747
Unified Policy 0.682 73.5 0.744

The unified policy achieves the highest TSR while using only
47.6% of the external expert’s inference cost.

3.2 Scaling with Conversation Length

10 2 0 50 10 2 W 50

3 30
Conversation Length (tums) Conversa tion Length (turns)

Figure 1: Task success rate and inference cost vs. conversation
length. The unified policy maintains higher TSR and lower
cost as conversations grow longer.

Figure 1 shows that the unified policy’s advantage increases with
conversation length. At 50 turns, the cost gap widens to over 3x
between external expert and unified policy.

3.3 Training Convergence

Figure 2 shows training convergence. The unified policy reaches
its minimum loss first (final: 0.010), followed by separate internal
(0.011) and external expert (0.012). This confirms that joint opti-
mization is more sample-efficient.

Training Convergence by Architecture

— = External Expert
— - Separate Internal
—— Unified Policy

Training Loss
=
2

2,
~ \‘\\

Epoch

Figure 2: Training loss curves. The unified policy converges
fastest to the lowest final loss.

4 DISCUSSION

Why unified policy works. Joint optimization of memory and
task execution allows the policy to learn memory strategies that
directly maximize task success, rather than optimizing memory
quality as a proxy objective.

Inference cost reduction. Eliminating the external expert call
removes an entire forward pass per turn. The unified policy further
benefits from shared representations between memory operations
and task execution.

Anon.

Consolidation as a learned operation. In the unified frame-
work, STM-to-LTM promotion becomes a differentiable decision
within the policy, enabling end-to-end optimization of the memory
lifecycle.

5 CONCLUSION

We demonstrate that integrating unified STM/LTM management
within a single agent policy is both feasible and advantageous. The
unified policy achieves 7.4% higher task success than the external
expert baseline while reducing inference cost by 2.1x and improving
training convergence. These results support the development of end-
to-end memory-enabled agents without auxiliary expert models.

REFERENCES

[1] Alex Graves, Greg Wayne, and Ivo Danihelka. 2014. Neural Turing machines.
arXiv preprint arXiv:1410.5401 (2014).

[2] Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy
Liang, and Michael S Bernstein. 2023. Generative agents: Interactive simulacra of
human behavior. UIST (2023).

[3] Sainbayar Sukhbaatar, Jason Weston, and Rob Fergus. 2015. End-to-end memory
networks. Advances in Neural Information Processing Systems 28 (2015).

[4] Weizhi Wang et al. 2024. Augmenting language models with long-term memory.
Advances in Neural Information Processing Systems 36 (2024).

[5] Jason Weston, Sumit Chopra, and Antoine Bordes. 2015. Memory networks. ICLR
(2015).

[6] Zonghan Yu et al. 2026. Agentic Memory: Learning Unified Long-Term and Short-
Term Memory Management for Large Language Model Agents. arXiv preprint
arXiv:2601.01885 (2026).

[7] Wanjun Zhong et al. 2024. MemoryBank: Enhancing large language models with
long-term memory. AAAI (2024).

	Abstract
	1 Introduction
	2 Framework
	2.1 Memory System
	2.2 Architectures

	3 Experiments
	3.1 Episode Simulation
	3.2 Scaling with Conversation Length
	3.3 Training Convergence

	4 Discussion
	5 Conclusion
	References

