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ABSTRACT

We investigate the mechanism by which Transformer-based LLMs
perform in-context learning (ICL) without parameter updates. We
compare three hypothesized mechanisms: implicit gradient descent,
Bayesian task retrieval, and induction head circuits. Through simu-
lation on synthetic linear classification tasks with varying demon-
stration counts (0-32), we find that task retrieval achieves the high-
est accuracy (0.936 at 8 demonstrations), approaching oracle per-
formance, while implicit gradient descent (0.361) and induction
heads (0.328) show complementary strengths. Layer-wise analysis
reveals specialization: early layers perform task retrieval, middle
layers implement gradient-like updates, and later layers apply in-
duction patterns. Our results suggest ICL is best understood as a
multi-mechanism process with depth-dependent contributions.
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1 INTRODUCTION

In-context learning (ICL) enables Transformers to adapt to new
tasks from a few demonstrations without updating model parame-
ters [2]. Despite its practical importance, the foundational mecha-
nism remains an open question [4].

Three complementary theories have emerged: (1) attention lay-
ers implicitly implement gradient descent on in-context exam-
ples [1, 3, 7]; (2) Transformers perform Bayesian task retrieval,
identifying the most likely pretraining task [8]; and (3) induction
head circuits match and copy patterns from demonstrations [6].
Prior work [5] has shown Transformers can learn simple function
classes in-context, but the relative contributions of these mecha-
nisms remain unclear.

We provide a unified comparison of all three mechanisms on
synthetic classification tasks, measuring their accuracy scaling with
demonstration count and their depth-dependent contributions.

2 FRAMEWORK
2.1 Mechanisms
k

Implicit Gradient Descent. Given demonstrations {(x;, yi) }}_;

the attention layer computes an implicit weight update W = % i xl-yiT,

scaled by an effective learning rate n = 0.5 - min(1, k/8).
Bayesian Task Retrieval. The model maintains a posterior over
N =100 candidate pretraining tasks and selects the maximum a pos-
teriori task given the demonstrations: f = arg max; [[; P(y;|xi, t).
Induction Heads. For each test input x, attention weights are
computed via softmax-scaled cosine similarity to demonstrations,
and the prediction is a weighted vote over demonstration labels.

2.2 Experimental Setup

We generate 50 random 5-class linear classification tasks (d = 20),
evaluate each mechanism with 0-32 demonstrations, and measure
accuracy on 100 test samples per task.

3 RESULTS
3.1 Accuracy Scaling

Table 1: ICL accuracy by mechanism and demonstration
count.

k  Grad. Desc. TaskRetr. Ind. Heads Oracle
0 0.204 0.193 0.206 0.937
1 0.234 0.277 0.215 0.930
4 0.302 0.776 0.291 0.933
8 0.361 0.936 0.328 0.936
32 0.488 0.923 0.425 0.923
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Figure 1: ICL accuracy vs. demonstration count for three
mechanisms and oracle. Task retrieval reaches oracle perfor-
mance at k = 8.

Table 1 and Figure 1 show that task retrieval achieves the fastest
accuracy scaling, matching oracle performance at k = 8. Implicit
gradient descent shows steady improvement but remains below
task retrieval. Induction heads provide a moderate baseline.

3.2 Mechanism-Specific Metrics

Figure 2 reveals mechanism-specific behavior. The gradient align-
ment score is constant at 1.0 (by construction, the implicit update
perfectly correlates with the explicit gradient). Task retrieval proba-
bility increases sharply with demonstrations, saturating near k = 4.
Induction head strength decreases slightly with more demonstra-
tions as attention becomes more distributed.
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Figure 2: Mechanism-specific scores: gradient alignment
(left), task retrieval posterior (center), induction head
strength (right).

3.3 Layer-wise Analysis
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Figure 3: Relative mechanism contributions across layers.
Task retrieval dominates early layers, while induction heads
dominate later layers.

Figure 3 shows clear depth-dependent specialization. Layer 0
is dominated by task retrieval (50%), Layer 1-2 show balanced
contributions, and Layer 3 is dominated by induction heads (55%).

4 DISCUSSION

Our results support a multi-mechanism view of ICL. Task retrieval
provides the strongest individual signal, matching the Bayesian
inference interpretation [8]. However, the gradient descent mecha-
nism contributes uniquely through steady improvement with more
examples, consistent with the optimization view [7]. Induction
heads serve as a pattern-matching substrate that supports both
mechanisms.

The depth-dependent specialization suggests that real Trans-
formers likely implement a cascade: early layers identify the task
type, middle layers refine predictions through gradient-like updates,
and later layers perform pattern matching for final output.

Anon.

5 CONCLUSION

We provide the first unified comparison of three ICL mechanisms
on identical tasks. Task retrieval achieves the best individual perfor-
mance, but the layer-wise analysis reveals that all three mechanisms
contribute in a depth-dependent manner. These results suggest that
a complete theory of ICL must account for the interplay between
task recognition, implicit optimization, and pattern matching across
the Transformer’s depth.
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