23
24
25
26
27
28
29

39
40
41
42
43
44

SFC-Score: A Unified Metric Framework Balancing Sparsity,
Fidelity, and Mechanistic Completeness for Interpretability
Evaluation

Anonymous Author(s)

ABSTRACT

Mechanistic interpretability (MI) methods decompose neural net-
work activations into interpretable features, yet no existing met-
ric jointly evaluates the three critical desiderata: sparsity, fidelity,
and mechanistic completeness. We present SFC-Score, a unified
evaluation framework based on the weighted harmonic mean of
these three axes. The harmonic mean formulation ensures that
catastrophic failure on any single axis dominates the joint score, re-
flecting the practical requirement that useful decompositions must
be adequate on all dimensions simultaneously. We formalize individ-
ual axis metrics—sparsity as the fraction of inactive features, fidelity
as reconstruction agreement, and completeness as behavioral vari-
ance preserved under ablation—and define a Pareto dominance
relation with hypervolume indicator for comparing method fami-
lies. On synthetic benchmarks with planted ground-truth circuits
across four model configurations (circuit sizes 4-24, hidden dimen-
sions 64-128), we demonstrate that the SFC-Score at equal weights
peaks at sparsity level 0.85 with a score of 0.905 on the standard
model, meaningfully separating decomposition quality. Weight sen-
sitivity analysis across seven preference profiles shows that the
optimal decomposition shifts predictably: sparsity-heavy (5:1:1)
preferences select 95% sparsity (score 0.917), while fidelity-heavy
(1:5:1) preferences select 70% sparsity (score 0.911). We further pro-
vide an information-theoretic formulation connecting sparsity to
rate, fidelity to distortion, and completeness to relevance in the rate-
distortion-relevance framework. Hypervolume analysis reveals that
the standard model achieves a Pareto front hypervolume of 0.874,
with all eight tested sparsity configurations lying on the Pareto
front. Dictionary size analysis shows that increasing K from 8 to
63 improves ground-truth completeness from 0.140 to 0.954 while
maintaining stable SFC-Scores near 0.74. Our framework provides
the first unified, configurable metric for MI method evaluation and
establishes a reusable synthetic benchmark suite for the community.
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1 INTRODUCTION

Mechanistic interpretability (MI) seeks to reverse-engineer neural
network computations into human-understandable components [9].
Sparse Autoencoders (SAEs) and dictionary learning methods have
emerged as powerful tools for extracting monosemantic features
from transformer activations [1, 5], with recent work scaling these
techniques to production-grade models [11]. However, the field
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faces a fundamental three-way trade-off identified by Zhang et
al. [12] as an explicit open challenge: developing metrics that jointly
balance sparsity, fidelity, and mechanistic completeness.

Sparsity ensures that only a small number of features activate
on any given input, yielding interpretable decompositions. Fidelity
requires that the reconstruction faithfully preserves the model’s
computations. Completeness demands that the extracted features
account for all causally relevant mechanisms, including distributed
or polysemantic structure. These three desiderata are fundamen-
tally in tension: increasing sparsity typically reduces fidelity, while
achieving high completeness may require retaining dense, less in-
terpretable components.

Current evaluation practice reports reconstruction loss (fidelity)
and £ /¢ norms (sparsity) separately, with no principled way to
compare methods occupying different points on the trade-off sur-
face and with completeness rarely measured at all. This paper ad-
dresses this gap by introducing the SFC-Score framework, which
provides: (1) formalized individual axis metrics, (2) a joint score
via weighted harmonic mean, (3) Pareto dominance relations with
hypervolume indicators, and (4) a synthetic benchmark suite with
planted ground-truth circuits for rigorous validation.

Our contributions are:

o We define operationalized metrics for sparsity, fidelity, and
mechanistic completeness that are computable for any fea-
ture decomposition method.

e We propose the SFC-Score as a weighted harmonic mean
that penalizes catastrophic failure on any axis while sup-
porting configurable preference profiles.

e We provide a Pareto front analysis with hypervolume indi-
cator for comparing method families across the full trade-off
surface.

e We connect the framework to information theory through
a rate-distortion-relevance formulation.

e We validate on synthetic benchmarks with known ground-
truth circuits across four model configurations, demonstrat-
ing that SFC-Score meaningfully separates decomposition
quality.

2 RELATED WORK

Sparse Autoencoders for Interpretability. Bricken et al. [1] intro-
duced training SAEs on transformer activations to extract monose-
mantic features, with standard evaluation reporting reconstruction
MSE and ) sparsity. Cunningham et al. [5] demonstrated that SAE-
discovered directions correspond to interpretable concepts. Tem-
pleton et al. [11] scaled SAE training to Claude 3 Sonnet, revealing
millions of interpretable features. The superposition hypothesis [6]
provides theoretical grounding for why sparse decomposition is
necessary.
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Fidelity and Faithfulness. Fidelity is typically measured as mean
squared error between original and reconstructed activations. Marks
et al. [8] argue for downstream fidelity: whether substituting the
SAE reconstruction preserves the model’s output distribution, mea-
sured via KL divergence or cross-entropy loss recovery.

Completeness and Causal Metrics. Causal scrubbing [2] tests
whether hypothesized computational graphs account for model be-
havior under resampling ablations. ACDC [3] measures the fraction
of model performance explained by extracted circuits. Distributed
Alignment Search [7] finds linear subspaces aligning with causal
variables, where completeness equals the fraction of behavioral
variance captured.

Multi-Objective Evaluation. The hypervolume indicator from
evolutionary optimization [13] provides a scalar summary of Pareto
front quality. Information-theoretic multi-objective metrics from
rate-distortion theory [4, 10] characterize optimal compression
trade-offs and can be adapted to our setting.

3 SFC-SCORE FRAMEWORK
3.1 Problem Formulation

Consider a neural network with activation space RP at a layer of
interest. A feature decomposition D consists of a dictionary W €
REXD and, for each input, coefficient vectors ¢; € RK such that
the reconstruction is 4; = ¢;W. We seek to evaluate D along three
axes simultaneously.

3.2 Individual Axis Metrics

Sparsity S(D). We define sparsity as the complement of the
average fraction of active features:

1< il
S(D)=1-— > =X 1
D) N = K )
where || - ||o counts coefficients exceeding a threshold 7 = 107°.

S = 1indicates maximal sparsity (no active features); S = 0 indicates
all features active on every input.

Fidelity F(D). We measure fidelity via mean cosine similarity
between original and reconstructed activation vectors:
1Y a4
F(D) == ) i @
N Zl sl T
Alternative formulations using R? or relative MSE are supported
but cosine similarity is our default due to its invariance to activation
scale.

Completeness C(D). Completeness measures whether the de-
composition captures all causally relevant structure. Given a down-
stream computation f, we project activations onto the subspace
spanned by the dictionary and measure behavioral preservation:

1 vM
coy-1-M T f () = f(rp @) )
Var[f(a)]
where 74 projects onto the row space of W via SVD. C = 1 indicates
perfect completeness; C = 0 indicates the decomposition captures
none of the relevant computation.

Anon.

Table 1: Synthetic model configurations. Circuit size / hidden
dimension determines circuit density.

Config Input Hidden Output Circuit
Standard 16 64 4 8/64
Large 32 128 8 16/128
Dense 16 64 4 24/64
Sparse 16 64 4 4/64

3.3 Joint SFC-Score

We define the SFC-Score as a weighted harmonic mean:

SFC(D:a, By) = atphry

©)

sty * Ty + oty
where a,f,y > 0 are preference weights. The harmonic mean
has two key properties: (1) it is dominated by the smallest input,
ensuring that catastrophic failure on any axis drags the entire score
toward zero, and (2) it equals the arithmetic mean when all inputs
are equal, providing an intuitive baseline. Settinga = f =y =1
gives equal weighting; practitioners can adjust weights to prioritize
safety-critical fidelity (f > 1) or human-review sparsity (a > 1).

3.4 Pareto Front and Hypervolume

For comparing method families rather than individual hyperpa-
rameter settings, we compute the Pareto front in (S, F, C) space. A
point p is dominated by q if q; > p; for all i and q; > p; for at least
one j. The Pareto front consists of all non-dominated points.

We summarize the front quality using the hypervolume indica-
tor [13] relative to the reference point (0, 0, 0):

HV(P) = Vol U [0,p] (5)
peP

Higher hypervolume indicates a better overall trade-off surface.

3.5 Information-Theoretic Formulation

We connect SFC to information theory by mapping: sparsity to
rate (entropy of coefficient distribution, normalized), fidelity to
distortion (1—F), and completeness to relevance (mutual information
proxy between encoding and model output). This establishes a rate-
distortion-relevance framework [4] where optimal decompositions
lie on the boundary of the achievable region.

4 EXPERIMENTAL SETUP
4.1 Synthetic Benchmark

We construct synthetic neural networks with known ground-truth
circuits, enabling rigorous metric validation impossible on real
models. Each model computes y = W3 - ReLU(W1x + by) + by,
where only a subset of hidden units (the circuit) connects to the
output via Wy; remaining units are noise.

We test four configurations (Table 1):

Each configuration generates N = 2,000 samples of hidden ac-
tivations. We create SAE-like decompositions at sparsity levels
A €{0.0,0.1,0.2,0.3,0.5,0.7,0.85,0.95} using dictionary size K = 48
(or K = min(48, D —1) for the large model). Dictionaries are learned
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Table 2: Weight profiles for SFC-Score evaluation.

Profile a p vy
Equal 1 1 1
Sparsity-heavy 5 1 1
Fidelity-heavy 1 5 1
Completeness-heavy 1 1 5
S+F 2 2 1
F+C 1 2 2
S+C 2 1 2

(a) Individual Metrics vs. Sparsity Level (b) Joint SFC-Score

Table 3: Core SFC evaluation on the standard model (K = 48,
hidden dim 64, circuit size 8). Cg7 is ground-truth complete-

ness.

A S F C SFC  Cgr
0.00 0.000 0.991 0.988 0.000 0.790
0.10 0.083 0991 0.988 0.214 0.790
0.20 0.188 0.991 0.988 0.408 0.790
0.30 0.292 0989 0.988 0.550 0.790
0.50 0.500 0.980 0.988 0.744 0.790
0.70 0.688 0.958 0.988 0.854 0.790
0.85 0.833 0.907 0.988 0.905 0.790
0.95 0938 0.777 0988 0.891 0.790
(a) Sparsity pref. (5:1:1) (b) Equal weights (1:1:1) (c) Completeness pref. (1:1:5)
SAE-sp95 SAE-sp85 SAE-sp85

1.04 1.04 @~ SFC-Score (1:1:1)
0.84 0.8 4
I
8 0.6 | —®— Sparsity S 8 0.6 4
8 —m— Fidelity F [
) 0.4 4 —&— Completeness C 8 0.4
wn
0.24 0.2 4
0.0 4 0.0 4

T T T T

T T T T T T
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Sparsity Level A Sparsity Level A

Figure 1: Core SFC trade-off on the standard model. (a) Indi-
vidual metrics vs. sparsity level. (b) Joint SFC-Score peaks at
A =0.85.

via truncated SVD, and sparsity is applied through hard coefficient
thresholding.

4.2 Evaluation Protocol

For each decomposition, we compute S, F (cosine mode), and C
(ablation-based with the model’s downstream layer as f). We also
compute ground-truth completeness Cgr, measuring the fraction
of true circuit directions captured by the dictionary subspace. SFC-
Scores are evaluated under seven weight profiles (Table 2).

5 RESULTS
5.1 Core SFC Trade-off

Figure 1 shows the fundamental three-way trade-off on the standard
model. As sparsity level A increases from 0.0 to 0.95, measured
sparsity S increases linearly from 0.000 to 0.938, fidelity F decreases
from 0.991 to 0.777, and completeness C remains nearly constant
at 0.988. The SFC-Score under equal weights (1:1:1) increases
monotonically from near zero (dominated by S ~ 0) to a peak of
0.905 at A = 0.85, then slightly decreases to 0.891 at A = 0.95 as
fidelity degrades.
Key observations from the standard model (Table 3):

e At A =0 (dense), S = 0.000 drives SFC to near zero despite
F = 0.991 and C = 0.988, demonstrating the harmonic
mean’s sensitivity to any axis near zero.

e The peak SFC of 0.905 at A = 0.85 represents S = 0.833,
F =0.907, C = 0.988—a balanced operating point.

e At A = 0.95, F drops to 0.777, causing SFC to decrease to
0.891 despite S = 0.938.

SAE-sp85

SAE-sp70

SAE-sp50

SAE-sp30

SAE-sp00

SAE-sp95

SAE-sp70

SAE-sp50

SAE-sp30

SAE-sp00

SAE-sp95

SAE-sp70

SAE-sp50

SAE-sp30

SAE-5p00

L L L

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
SFC-Score SFC-Score SFC-Score

Figure 2: SFC-Score rankings under three weight profiles.

The optimal method shifts from sp95 (sparsity preference)
through sp85 (equal) to sp70 (fidelity preference).

Table 4: Best decomposition under each weight profile.

Profile Best Method Score
Equal (1:1:1) SAE-sp85  0.905
Sparsity (5:1:1) SAE-sp95 0.917
Fidelity (1:5:1) SAE-sp70 0.911
Completeness (1:1:5) SAE-sp85 0.951
S+F (2:2:1) SAE-sp85 0.890
F+C (1:2:2) SAE-sp85 0.921
S+C (2:1:2) SAE-sp95 0918

5.2 Weight Sensitivity Analysis

Figure 2 and Table 4 show how different weight profiles change the
optimal decomposition selection. Under equal weights, SAE-sp85
achieves the highest SFC of 0.905. With sparsity-heavy weights
(5:1:1), the optimum shifts to SAE-sp95 with a score of 0.917,
since the high S = 0.938 is upweighted. With fidelity-heavy weights
(1:5:1), SAE-sp70 becomes optimal at 0.911, as its F = 0.958 is
prioritized over SAE-sp85’s lower fidelity.

5.3 Cross-Architecture Generalization

Figure 3 demonstrates that SFC-Score behavior generalizes across
model configurations. All four architectures exhibit the same qual-
itative pattern: SFC increases with sparsity level, peaks near A =
0.85-0.90, and decreases at extreme sparsity. The sparse-circuit
model (4/64) achieves the highest peak SFC of 0.908, while the large
model (16/128) achieves the lowest at 0.854, reflecting the latter’s
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(b) Pareto Hypervolume

(a) SFC-Score Across Architectures

1 ndare ens 1S3
L0 e e e By
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0.0 0.2 0.4 0.6 0.8 Standard  Large Dense  Sparse
Sparsity Level A

Figure 3: (a) SFC-Score curves across four architectures show
consistent trade-off shape. (b) Pareto hypervolumes with the
count |P| of Pareto-optimal points.

Table 5: Pareto front analysis across architectures.

Config |Pareto|/N HV(front) HV(all)
Standard 8/8 0.874 0.874
Large 8/8 0.748 0.748
Dense 8/8 0.874 0.874
Sparse 8/8 0.883 0.883

lower baseline fidelity and completeness due to its more complex
hidden structure.

Hypervolume indicators confirm consistent trade-off quality: the
standard model achieves 0.874, the large model 0.748, the dense-
circuit model 0.874, and the sparse-circuit model 0.883.

5.4 Pareto Front Analysis

Across all four model configurations, all eight tested sparsity con-
figurations lie on the Pareto front (Table 5). This occurs because
increasing sparsity monotonically trades fidelity for sparsity while
completeness remains approximately constant, creating a strictly
monotone trade-off curve where no point dominates another.

5.5 Information-Theoretic Analysis

Figure 4 shows the information-theoretic analogs. As sparsity level
increases, rate (encoding entropy) decreases from 0.821 to 0.086,
distortion increases from 0.023 to 0.559, and relevance remains
approximately constant near 0.335. The information-theoretic spar-
sity analog tracks the standard metric closely (r > 0.99), while the
fidelity analog shows a steeper degradation curve since it captures
MSE-based distortion rather than cosine similarity.

5.6 Dictionary Size Sensitivity

Table 6 shows the effect of dictionary size K at fixed sparsity A = 0.5.
Ground-truth completeness Cgr increases monotonically from
0.140 (K = 8) to 0.954 (K = 63), confirming that larger dictio-
naries capture more of the true circuit. The metric completeness
C increases from 0.734 to 0.998. The SFC-Score remains relatively
stable between 0.647 and 0.744, as the fidelity gains from larger
dictionaries roughly compensate for the fixed sparsity level.

Anon.

(a) Rate-Distortion-Relevance (b) Standard vs. IT Metrics
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Figure 4: (a) Rate-distortion-relevance curves. (b) Standard

metrics vs. information-theoretic analogs; the identity line
shows calibration.

Table 6: Dictionary size sensitivity at 1 = 0.5.

K S F C SFC Cgr

8 0.500 0.785 0.734 0.647 0.140
16 0.500 0.901 0.861 0.702 0.264
24 0500 0938 0934 0.725 0.442
32 0500 0958 0.969 0.736 0.581
48 0.500 0.980 0.988 0.744 0.790
63 0492 0992 0998 0.742 0.954

SFC-Score Under Weight Profiles

1.0
Equal (1:1:1)
Sparsity (5:1:1) 0.8
Fidelity (1:5:1
ety (1:3:1) 0.6 §
8
Compl. (1:1:5) @
o
045
S+F (2:2:1) «»
F+C (1:2:2) 0.2
S+C (2:1:2)
0.0

Figure 5: Weight sensitivity heatmap. Rows are weight pro-
files; columns are decompositions ordered by equal-weight
SFC. SAE-sp85 is the most robust choice across profiles.

5.7 Weight Sensitivity Heatmap

Figure 5 presents a heatmap of SFC-Scores across all seven weight
profiles and six decompositions. The heatmap reveals that SAE-sp85
achieves the most consistently high scores across profiles, while
SAE-sp00 (dense) is uniformly near zero. The completeness-heavy
profile (1:1:5) yields the highest absolute scores since completeness
is uniformly high (C =~ 0.988).

6 DISCUSSION

The Value of the Harmonic Mean. Our results demonstrate that
the harmonic mean formulation in Equation 4 correctly captures
the intuition that a decomposition must be adequate on all axes.
The dense decomposition (A = 0) achieves near-perfect fidelity
and completeness but receives SFC ~ 0 due to zero sparsity. This
is the desired behavior: a completely dense decomposition, while
accurate, is not interpretable.
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Completeness Plateau. A notable finding is that completeness C
remains nearly constant across sparsity levels (0.988 for the stan-
dard model). This occurs because our dictionary learning captures
the principal activation directions regardless of coefficient sparsity.
The ground-truth completeness Cgr = 0.790 is lower and invariant
to sparsity level, confirming that subspace coverage depends on
dictionary composition rather than activation patterns.

Limitations. Our synthetic benchmarks, while providing ground-
truth validation, use linear ground-truth circuits. Real neural net-
works exhibit nonlinear feature interactions that linear SAEs cannot
capture, and completeness metrics should detect this gap. Addition-
ally, the computational cost of ablation-based completeness scales
with model size, requiring efficient approximations for large-scale
deployment. The current evaluation uses dictionary learning via
SVD, which may not reflect the full complexity of trained SAE
decompositions.

7 CONCLUSION

We have presented SFC-Score, a unified metric framework that
jointly evaluates sparsity, fidelity, and mechanistic completeness for
interpretability decompositions. Through experiments on synthetic
benchmarks with planted circuits, we demonstrate that the frame-
work meaningfully separates decomposition quality, responds pre-
dictably to preference weights, and generalizes across model archi-
tectures. The information-theoretic connection to rate-distortion-
relevance provides principled grounding, and the Pareto hyper-
volume analysis offers a scalar summary for comparing method
families. We release our synthetic benchmark suite and evaluation
code to support standardized MI method evaluation.
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