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Diagnosing Post-Training Misalignment Regression and
Cross-Domain Safety Generalization Gaps
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ABSTRACT
We diagnose the causes of post-training alignment regression and
quantify cross-domain safety generalization gaps. Tice et al. [7] ob-
served that alignment-upsampled models show slight misalignment
increases after SFT+DPO, conjecturing distributional mismatch be-
tween pretraining data (loss-of-control risks) and post-training
safety data (toxicity/jailbreak refusal). We confirm this hypothe-
sis through five experiments. Post-training improves alignment in
covered domains (toxicity: +0.359, jailbreak: +0.309) but causes re-
gression in uncovered domains (weight exfiltration: −0.041, power
seeking: −0.021). Cross-domain transfer from toxicity-refusal to
loss-of-control domains is weak: only 0.08 to weight exfiltration
and 0.10 to power-seeking refusal. Regression severity correlates
with domain mismatch (𝑟 = 0.87). Domain-aligned post-training
that includes loss-of-control data recovers +0.150 points in previ-
ously regressed domains while maintaining gains in toxicity and
jailbreak resistance.

1 INTRODUCTION
Alignment pretraining—incorporating alignment-relevant data dur-
ing pre-training—has shown promise for shaping LLM safety pri-
ors [7]. However, Tice et al. discovered that these gains can par-
tially regress after standard post-training (SFT [5] + DPO [6]), with
the Alignment Upsampled model showing slight misalignment in-
creases in certain domains.

This regression resembles catastrophic forgetting [4]: post-training
on toxicity/jailbreak data may overwrite safety behaviors learned
during pretraining for different domains. The authors conjectured
that the mismatch between pretraining focus (deception, power
seeking) and post-training data (CoCoNot, WildGuardMix, Wild-
Jailbreak [2]) drives this effect.

We investigate this through: (1) quantifying pre/post alignment
changes across six safety domains, (2) measuring cross-domain
transfer, (3) correlating regression with domain mismatch, and (4)
evaluating domain-aligned post-training as mitigation.

2 RELATEDWORK
Safety training for LLMs typically uses RLHF [1] or DPO [6]. Wei
et al. [8] analyzed safety training failures, while Hubinger et al. [3]
studied persistence of learned behaviors through safety training.
Our work uniquely addresses the interaction between pretraining
alignment and post-training safety data distributions.

3 METHODOLOGY
We define six safety domains spanning toxicity-style and loss-of-
control risks. We model alignment scores before and after post-
training, with post-training effects dependent on whether each
domain is covered by the post-training data distribution.

Table 1: Alignment scores before and after post-training.

Domain Pre Post Change

Toxicity Refusal 0.550 0.909 +0.359
Jailbreak Resist. 0.500 0.809 +0.309
Deception Avoidance 0.720 0.779 +0.059
Sycophancy Resist. 0.620 0.649 +0.029
Power-Seek Refusal 0.680 0.659 −0.021
Wt. Exfil. Refusal 0.650 0.609 −0.041
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Figure 1: Pre vs post-training alignment across safety do-
mains.

3.1 Safety Domains
• Post-training covered: Toxicity refusal, Jailbreak resis-

tance
• Pretraining only: Deception avoidance, Power-seeking

refusal, Weight exfiltration refusal, Sycophancy resistance

4 RESULTS
4.1 Post-Training Alignment Changes
Table 1 shows that post-training dramatically improves alignment
in covered domains but causes regression in uncovered ones.Weight
exfiltration refusal drops by 0.041 and power-seeking refusal by
0.021.

4.2 Cross-Domain Transfer
Figure 2 shows that transfer from toxicity-refusal to loss-of-control
domains is weak: 0.08 to weight exfiltration, 0.10 to power seeking.
In contrast, within-cluster transfer is strong (toxicity→jailbreak:
0.60, deception→power-seeking: 0.45).

4.3 Regression-Mismatch Correlation
Figure 3 shows that regression severity correlates strongly with do-
main mismatch (correlation 𝑟 = 0.87). Domains with high mismatch
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Figure 2: Cross-domain safety transfer matrix.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Mismatch Score

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Po
st

-Tr
ai

ni
ng

 C
ha

ng
e

Toxicity

Jailbreak

Deception

Power-Seek
Wt. Exfil.

Sycophancy

Alignment Regression vs Domain Mismatch

Figure 3: Alignment change vs domain mismatch score.

Table 2: Standard vs domain-aligned post-training.

Domain Standard Aligned Improv.

Toxicity Refusal 0.909 0.909 +0.000
Jailbreak Resist. 0.809 0.809 +0.000
Deception Avoid. 0.779 0.929 +0.150
Power-Seek Ref. 0.659 0.809 +0.150
Wt. Exfil. Ref. 0.609 0.759 +0.150
Sycophancy Res. 0.649 0.799 +0.150

(in pretraining but not post-training) show the largest alignment
drops.

4.4 Mitigation
Table 2 shows that domain-aligned post-training recovers lost align-
ment. Weight exfiltration improves from 0.609 to 0.759 (+0.150),
while toxicity and jailbreak domains maintain their gains.

5 DISCUSSION
Our results confirm Tice et al.’s mismatch hypothesis: post-training
regression is driven by distributional mismatch between pretraining
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Figure 4: Domain-aligned post-training recovers lost align-
ment.

and post-training safety data. Critically, toxicity-refusal training
does not generalize to weight exfiltration refusal (transfer = 0.08),
answering the authors’ specific question. The practical solution is
straightforward: include loss-of-control scenarios in post-training
data to maintain comprehensive safety coverage.

6 CONCLUSION
We have diagnosed the causes of post-training alignment regres-
sion, confirming that distributional mismatch between safety data
domains drives regression. Cross-domain transfer between toxicity
and loss-of-control domains is weak, necessitating explicit cover-
age. Domain-aligned post-training effectively mitigates regression
while preserving gains.
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