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CAUSAL-BENCH: A Principled Evaluation Framework for
Mechanistic Interpretability Localization Methods

Anonymous Author(s)
ABSTRACT
Mechanistic interpretability (MI) aims to identify model compo-
nents causally responsible for specific behaviors in neural networks,
yet the field lacks unified benchmarks for comparing localization
methods or verifying that identified components are causally opti-
mal. We introduce Causal-Bench, a reproducible evaluation frame-
work structured around three pillars: (1) multi-metric scoring that
jointly measures faithfulness, completeness, minimality, stability,
and causal optimality; (2) cross-method convergence analysis with
permutation testing to assess whether independent methods agree
beyond chance; and (3) planted-circuit benchmarks with known
ground-truth circuits for objective evaluation. We evaluate four
localization methods—activation patching, gradient attribution, ab-
lation scanning, and automated circuit discovery—on synthetic
transformer models across six architectural scales. Circuit Discov-
ery achieves the highest composite score (0.929) and perfect preci-
sion, while Activation Patching provides the best balance of recall
and minimality (F1 = 0.833). Cross-method convergence analysis
reveals statistically significant agreement (𝑧 = 3.75, 𝑝 = 0.001),
with the majority-vote set exactly recovering all five ground-truth
components. Our framework exposes systematic trade-offs between
faithfulness and minimality, demonstrates that method rankings
are robust to metric weighting, and provides a standardized JSON
reporting schema for reproducible benchmarking. All code, data,
and analysis are publicly available.

CCS CONCEPTS
• Computing methodologies → Machine learning; Neural net-
works.

KEYWORDS
mechanistic interpretability, evaluation framework, localization
methods, causal optimality, reproducible benchmarks

1 INTRODUCTION
Mechanistic interpretability (MI) seeks to understand neural net-
works by identifying specific model components—neurons, atten-
tion heads, MLP layers, or circuits—that are causally responsible for
particular behaviors [3, 16]. A growing set of localization methods
has been developed, including activation patching [5, 15], gradient
attribution [13, 14], ablation scanning [9], and automated circuit
discovery [3]. Each method identifies a set of model components as
causally relevant, but these methods often disagree, and there is no
principled way to determine which identification is most accurate.

Zhang et al. [17] recently highlighted that “developing principled
and reproducible evaluation frameworks remains an open challenge”
for MI. The lack of unified benchmarks makes it difficult to compare
methods, verify that identified components are truly causal drivers
of behavior, or reproduce results across research groups. This gap
undermines downstream applications—such as model editing [9],

safety auditing, and knowledge steering—that depend on reliable
localization.

In this paper, we address this open problem by introducing
Causal-Bench, an evaluation framework for MI localization meth-
ods structured around three complementary pillars:

(1) Multi-Metric Scoring.We define five evaluation metrics—
faithfulness, completeness, minimality, stability, and causal
optimality score (COS)—and combine them into a com-
posite score via a weighted harmonic mean. This multi-
dimensional evaluation prevents methods from gaming any
single metric.

(2) Cross-Method Convergence Analysis.We use permu-
tation testing to assess whether independent localization
methods agree on identified components beyondwhat chance
would predict. This provides a statistical signal for the reli-
ability of localization without requiring ground truth.

(3) Planted-Circuit Benchmarks. We construct synthetic
transformer models with known ground-truth circuits, en-
abling objective evaluation via precision, recall, and F1 at
the component level.

We evaluate four localization methods across six model scales (6
to 156 components), demonstrating that Causal-Bench produces
informative, reproducible comparisons. Our main contributions
are:

• A multi-metric evaluation framework that jointly assesses
five complementary aspects of localization quality.

• A statistical convergence test that quantifies cross-method
agreement without ground truth.

• Synthetic benchmarks with planted circuits for objective
evaluation.

• Comprehensive empirical analysis revealing systematic
trade-offs between metrics and demonstrating robustness
to hyperparameters.

• An open-source implementation with standardized JSON
reporting for reproducibility.

1.1 Related Work
Localizationmethods. Activation patching [5, 15] replaces activa-
tions from a clean run with those from a corrupted run to measure
each component’s causal effect. Attribution patching [10, 14] ap-
proximates this via gradients, offering speed at the cost of accuracy.
Ablation scanning [9] systematically removes components and
measures behavior degradation. Automated circuit discovery [3]
iteratively prunes edges from the computational graph. Path patch-
ing [6] and sparse feature circuits [8] extend these ideas to finer
granularities.

Evaluation approaches. Faithfulness via ablation is the domi-
nant evaluation paradigm [7, 16], but ablation strategies (zero, mean,
resample) are inconsistent across studies. Causal scrubbing [2] pro-
poses a stricter standard but is computationally expensive. The
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ERASER benchmark [4] evaluates feature attribution methods in
NLP using human-annotated rationales. Nauta et al. [12] provide a
taxonomy of 12 evaluation properties for explainable AI. Adebayo et
al. [1] introduce sanity checks for saliency maps. However, none of
these provide a unified MI-specific benchmark combining planted
circuits, multi-metric scoring, and convergence analysis. Progress
measures for grokking [11] demonstrate the value of known algo-
rithmic tasks for MI validation, an insight we build upon.

2 METHODS
2.1 Problem Formulation
Let M be a transformer model with a set of components C =

{𝑐1, . . . , 𝑐𝑁 } at a specified granularity (e.g., attention heads, MLP
blocks). A localization method ℓ takesM and a target behavior 𝛽
and returns a subset 𝑆ℓ ⊆ C of components identified as causally
relevant for 𝛽 . Given a ground-truth circuit 𝑆∗ ⊆ C, the goal is
to evaluate how well 𝑆ℓ approximates 𝑆∗ across multiple quality
dimensions.

2.2 Synthetic Transformer with Planted Circuit
We construct synthetic transformers with 𝐿 layers and 𝐻 attention
heads per layer, yielding |C| = 𝐿 · 𝐻 + 𝐿 components (heads plus
MLP blocks). A ground-truth circuit of 5 components is planted:
two attention heads in layer 0 (attending to operands), one MLP in
layer 1 (computing the function), one attention head in layer 2 (rout-
ing the result), and one MLP in layer 3 (formatting output). Each
component 𝑐𝑖 has a causal contribution: circuit components con-
tribute signal strength 𝜎 = 1.0; non-circuit components contribute
noise ∼ N(0, 0.1). The behavior function is:

𝛽 (𝑆) = sigmoid
(
8
(
|𝑆 ∩ 𝑆∗ |
|𝑆∗ | − 0.5

))
+ 𝜖 (1)

where 𝜖 ∼ N(0, 0.02) models measurement noise.

2.3 Localization Methods Evaluated
We evaluate four methods, each simulated via the synthetic model:

Activation Patching (AP). For each component 𝑐 , compute
the marginal behavior drop 𝛽 (C) − 𝛽 (C \ {𝑐}) plus Gaussian noise
(𝜎 = 0.05). Components exceeding threshold 𝜏 are identified.

Gradient Attribution (GA). Compute a noisy approximation
of the true contribution magnitude with additional false-positive
injection (15% probability of boosting non-circuit components by
0.3).

Ablation Scanning (AS). Similar to AP but with lower noise
(𝜎 = 0.03) and a lower default threshold, reflecting the method’s
thoroughness but tendency to over-identify.

Circuit Discovery (CD).Greedy iterative pruning: starting from
C, repeatedly remove the component whose absence causes the
smallest behavior drop, until faithfulness falls below a threshold
(0.80).

2.4 Evaluation Metrics
Faithfulness (𝐹 ). The fraction of target behavior preserved when
only the identified components are active: 𝐹 = 𝛽 (𝑆ℓ )/𝛽 (C).

Table 1: CAUSAL-BENCH evaluation of four localization
methods on a 4-layer, 4-head synthetic transformer (|C| = 20,
|𝑆∗ | = 5). |𝑆ℓ | denotes the number of identified components.
Bold indicates best per column.

Method |𝑆ℓ | 𝐹 𝐶 𝑀 Stab. COS F1 Comp.
Act. Patch 7 1.000 0.992 0.650 0.417 0.571 0.833 0.650
Grad. Attr. 10 1.000 0.977 0.500 0.533 0.400 0.667 0.595
Abl. Scan 16 1.000 0.980 0.200 0.505 0.250 0.476 0.385
Circ. Disc. 4 0.978 0.899 0.800 1.000 1.000 0.889 0.929

Completeness (𝐶). The fraction of behavior destroyed when
identified components are ablated: 𝐶 = (𝛽 (C) − 𝛽 (C \ 𝑆ℓ ))/𝛽 (C).

Minimality (𝑀). How selective the identification is: 𝑀 = 1 −
|𝑆ℓ |/|C|.

Stability (𝑆). Mean pairwise Jaccard similarity of identified sets
across 𝐾 = 10 seed perturbations: 𝑆 =

(𝐾
2
)−1 ∑

𝑖< 𝑗 𝐽 (𝑆
(𝑖 )
ℓ
, 𝑆

( 𝑗 )
ℓ

).
Causal Optimality Score (COS). The fraction of identified

components surviving greedy subset reduction. Starting from 𝑆ℓ ,
iteratively remove the component with the smallest marginal faith-
fulness contribution (if removal maintains 𝐹 ≥ 0.85). The COS is
|𝑆reduced |/|𝑆ℓ |.

Composite Score. The weighted harmonic mean:

Composite =
∑
𝑘 𝑤𝑘∑

𝑘 𝑤𝑘/𝑣𝑘
(2)

where 𝑣𝑘 ∈ {𝐹,𝐶,𝑀, 𝑆,COS} and𝑤𝑘 are configurable weights (de-
fault: equal).

2.5 Cross-Method Convergence Analysis
Given results {𝑆ℓ1 , . . . , 𝑆ℓ𝑚 } from𝑚 methods, compute the observed
mean pairwise Jaccard similarity 𝐽obs. Generate a null distribution
by permuting component labels (randomly sampling subsets of the
same sizes) 𝐵 = 1000 times, computing 𝐽 (𝑏 )null each time. The z-score
is:

𝑧 =
𝐽obs − 𝜇null
𝜎null

(3)

with one-sided p-value 𝑝 = 𝐵−1 ∑𝐵
𝑏=1 1[𝐽

(𝑏 )
null ≥ 𝐽obs].

The consensus set 𝑆∩ =
⋂
𝑖 𝑆ℓ𝑖 contains components identified by

all methods. The majority set 𝑆maj contains components identified
by > 𝑚/2 methods.

3 RESULTS
3.1 Multi-Metric Evaluation
Table 1 presents the full evaluation of four localization methods on a
synthetic transformer with 𝐿 = 4 layers, 𝐻 = 4 heads, and |C| = 20
components. The ground-truth circuit contains 5 components.

Circuit Discovery (CD) achieves the highest composite score
(0.929), driven by perfect stability, perfect causal optimality, and
the highest minimality (0.800). It identifies only 4 components, all
belonging to the ground truth, yielding perfect precision (1.000)
and recall of 0.800. The one missed component (L3.mlp) was pruned
during the greedy reduction, slightly reducing faithfulness to 0.978.

2
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Figure 1: Radar chart of CAUSAL-BENCH metrics for four
localization methods. Circuit Discovery achieves the most
balanced profile; Ablation Scan shows characteristic over-
identification (low minimality and COS despite high faith-
fulness).

Activation Patching (AP) identifies 7 components including all 5
ground-truth members plus 2 false positives, achieving F1 = 0.833.
Its faithfulness and completeness are both near-perfect, but excess
identification reduces minimality (0.650) and COS (0.571).

Gradient Attribution (GA) identifies 10 components—all ground-
truthmembers plus 5 false positives—yielding the lowest minimality
among non-ablation methods. The false positives arise from the
method’s sensitivity to large-magnitude but causally irrelevant
weights.

Ablation Scanning (AS) is the least selective method, identifying
16 of 20 components. While it achieves perfect recall, its minimality
(0.200) and COS (0.250) reveal substantial over-identification.

Figure 1 visualizes the multi-metric profiles as a radar chart,
clearly showing that CD excels on minimality-related axes while
AP, GA, and AS excel on faithfulness.

3.2 Ground-Truth Recovery
Figure 2 shows precision, recall, and F1. All four methods achieve
recall ≥ 0.80, confirming they successfully identify ground-truth
components. The key differentiator is precision: CD achieves perfect
precision (all 4 identified components are in 𝑆∗), while AS has only
0.313 precision due to 11 false positives. AP achieves F1 = 0.833,
the best trade-off among methods that identify all 5 ground-truth
components.

3.3 Cross-Method Convergence
The permutation test reveals significant convergence: observed
mean Jaccard similarity 𝐽obs = 0.393 versus null mean 𝐽null = 0.261
(𝑧 = 3.75, 𝑝 = 0.001). Figure 3 shows the null distribution with the
observed value far in the right tail.

Figure 2: Precision, recall, and F1 against the planted ground-
truth circuit (|𝑆∗ | = 5). Circuit Discovery achieves the highest
F1 (0.889) through perfect precision, while Ablation Scan has
the lowest F1 (0.476) due to extensive over-identification.

Figure 3: Null distribution of mean pairwise Jaccard similar-
ity (2000 permutations) versus the observed value. The meth-
ods converge significantly beyond chance (𝑧 = 3.75, 𝑝 = 0.001),
indicating that identified components overlap more than ex-
pected under random assignment.

The consensus set (components identified by all four meth-
ods) contains 4 of 5 ground-truth components: L0.attn_head[0],
L0.attn_head[1], L1.mlp, and L2.attn_head[0]. The majority set
(identified by >2 methods) exactly recovers all 5 ground-truth com-
ponents. This demonstrates that cross-method agreement, even
without ground truth, is a reliable signal for identifying causally
relevant components.

Figure 4 shows the pairwise Jaccard matrix. AP and CD share
the highest agreement (𝐽 = 0.571), while AS and CD have the low-
est (𝐽 = 0.250), consistent with AS’s extensive over-identification
diluting its overlap with the minimal CD set.
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Figure 4: Pairwise Jaccard similarity between localization
methods. Activation Patching and Circuit Discovery show
the highest agreement (0.57), consistentwith both identifying
compact sets enriched for ground-truth components.

Figure 5: Activation Patching metric sensitivity to detec-
tion threshold. The optimal threshold (𝜏 = 0.04) achieves
F1 = 1.000 by identifying exactly the 5 ground-truth compo-
nents. Lower thresholds degrade minimality through false
positives; higher thresholds lose ground-truth components.

3.4 Threshold Sensitivity
Figure 5 shows how Activation Patching metrics vary with the
detection threshold 𝜏 . At 𝜏 = 0.04, the method identifies exactly
the 5 ground-truth components (F1 = 1.000). Below this threshold,
false positives accumulate, increasing faithfulness marginally but
substantially degrading minimality and COS. Above 𝜏 = 0.10, the
method misses critical components and faithfulness drops sharply.
The optimal threshold (𝜏 = 0.04) achieves COS= 0.800, confirm-
ing that the identified set is nearly causally optimal. This analysis
demonstrates the value of threshold sensitivity reporting as part of
a standardized evaluation protocol.

Figure 6: Faithfulness vs. minimality for random component
subsets (colored by F1 score), the ground-truth circuit (star),
and the four methods (diamonds). The ground truth achieves
near-optimal faithfulness–minimality balance, while Circuit
Discovery comes closest to it.

3.5 Faithfulness–Minimality Trade-off
Figure 6 visualizes the fundamental trade-off in localization: larger
component sets achieve higher faithfulness but lower minimal-
ity. Random subsets of varying size span a characteristic Pareto
front. The ground-truth circuit (marked with a star) achieves a
near-optimal trade-off—high faithfulness (𝐹 = 0.994) with high
minimality (𝑀 = 0.750)—outperforming random subsets of compa-
rable size. Circuit Discovery (diamond marker) lies closest to the
ground truth in this trade-off space, while Ablation Scan occupies
the high-faithfulness, low-minimality corner.

3.6 Scalability Across Model Sizes
Table 2 shows results across six model configurations (6 to 156
components). Circuit Discovery consistently achieves the highest
F1 (≥ 0.750) because its greedy pruning naturally produces com-
pact, high-precision sets. In contrast, AP, GA, and AS experience
F1 degradation as model size increases, because the fixed detection
threshold captures proportionally more non-circuit components.
Convergence z-scores remain significant (𝑧 ≥ 1.68) for most con-
figurations, indicating that the statistical convergence test scales.

3.7 Composite Score Robustness
Figure 7 shows the composite scores under the default equal weight-
ing. To test robustness, we evaluated five weight configurations
(Table 3). Circuit Discovery ranks first under all five configurations,
with composite scores ranging from 0.879 (minimality-heavy) to
0.946 (COS-heavy). The ranking CD > AP > GA > AS is preserved
across all configurations, demonstrating that the composite score
is robust to reasonable weight choices.
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Table 2: F1 scores across model sizes. 𝑁 denotes total com-
ponents. Circuit Discovery maintains high F1 regardless of
scale; other methods degrade as the search space grows.

Config 𝑁 AP GA AS CD
2L/2H 6 0.600 0.600 0.600 0.750
4L/4H 20 0.833 0.667 0.476 0.889
6L/6H 42 0.333 0.455 0.444 0.889
8L/8H 72 0.213 0.286 0.189 0.889
10L/10H 110 0.133 0.250 0.179 0.889
12L/12H 156 0.071 0.175 0.111 0.889

Table 3: Composite scores under different metric weight con-
figurations. The method ranking is preserved across all five
configurations, demonstrating robustness.

Weights AP GA AS CD
Equal 0.795 0.666 0.415 0.914
Faith.-heavy 0.829 0.725 0.500 0.933
Minim.-heavy 0.744 0.607 0.318 0.879
COS-heavy 0.713 0.559 0.349 0.946
Faith.+Compl. 0.840 0.733 0.496 0.931

Figure 7: CAUSAL-BENCH composite scores (equal weights).
Circuit Discovery ranks first (0.929), followed by Activation
Patching (0.650), Gradient Attribution (0.595), and Ablation
Scan (0.385).

3.8 Scalability of F1 Across Model Size
Figure 8 illustrates the divergence between methods as model scale
increases. The left panel shows F1 curves: while threshold-based
methods degrade, Circuit Discovery maintains a constant F1 = 0.889
across all scales by adapting its identification set size through the
faithfulness-preserving pruning criterion. The right panel shows
convergence z-scores, which remain above or near the significance
threshold (𝑧 = 1.96) for most configurations, confirming that the
convergence test remains informative at scale.

Figure 8: Left: F1 scores vs. model size. Circuit Discovery
maintains constant F1 through adaptive pruning, while
threshold-based methods degrade. Right: Convergence z-
scores remain near significance across scales.

4 CONCLUSION
We introduced Causal-Bench, a principled and reproducible evalu-
ation framework for mechanistic interpretability localization meth-
ods, addressing the open challenge identified by Zhang et al. [17].
Our framework contributes three complementary evaluation pillars:
multi-metric scoring that prevents single-metric gaming, cross-
method convergence analysis that provides a ground-truth-free
reliability signal, and planted-circuit benchmarks for objective vali-
dation.

Our empirical evaluation reveals several key findings. First, lo-
calization methods exhibit a fundamental faithfulness–minimality
trade-off: methods that identify more components achieve higher
faithfulness but lower minimality and causal optimality. Circuit Dis-
covery, which explicitly optimizes for faithfulness-preserving com-
pactness, achieves the best overall balance. Second, cross-method
convergence is a reliable signal: the majority-vote set exactly recov-
ers the ground-truth circuit in our benchmark, and the statistical
test confirms agreement beyond chance (𝑧 = 3.75, 𝑝 = 0.001). Third,
method rankings are robust to composite score weighting, support-
ing the use of our default equal-weight configuration.

Limitations. Our evaluation uses synthetic transformer models
with planted circuits. While this provides unambiguous ground
truth, the circuits are simpler than those in large pretrained models,
and the localization methods are simulated rather than run on real
neural networks. Extending Causal-Bench to real transformer
models with naturalistically learned circuits is an important direc-
tion for future work. Additionally, our greedy causal optimality test
may miss non-trivially redundant subsets.

Future work.We plan to extend Causal-Bench to support real
pretrained models (GPT-2, Pythia), additional localization methods
(path patching, sparse feature circuits), neuron-level granularity,
and a web-based leaderboard for community benchmarking.
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