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Productionizing Activation Capping and Preventative
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ABSTRACT
We present a comprehensive computational framework for produc-
tionizing inference-time activation capping and training-time pre-
ventative steering to stabilize languagemodel personas andmitigate
persona drift. Building on the Assistant Axis concept—a linear direc-
tion in activation space capturing persona alignment—we evaluate
three axis estimation methods (PCA mean difference, contrastive,
supervised logistic), characterize the capping threshold–capability
trade-off, and compare four training-time steering approaches (aux-
iliary loss, activation regularization, contrastive gradient penalty,
and their combinations). Our experiments demonstrate that all
axis estimation methods achieve alignment > 0.996 at low noise,
with contrastive estimation marginally best (0.9968). The optimal
capping threshold of 0.4 achieves 100% harm reduction while pre-
serving 96.97% capability (F1=0.985). Among training-time meth-
ods, auxiliary loss steering most effectively reduces persona drift
(final drift 0.727 vs. 0.952 baseline), while the combined auxiliary-
plus-regularization approach achieves the lowest drift (0.709) with
perfect defense scores. Scalability analysis across model sizes from
125M to 175B parameters shows capping overhead decreasing from
0.0074% to 0.0007%, with 𝑅2 = 0.99 log-linear scaling (𝑝 < 10−5).
These results establish practical guidelines for deploying persona
stabilization at production scale.

KEYWORDS
activation capping, persona drift, training-time steering, language
model safety, representation engineering

1 INTRODUCTION
Language models deployed as assistants must maintain a stable,
helpful persona to ensure safe and reliable interactions. Recent work
identified the Assistant Axis [4]—a linear direction in activation
space that captures how closely a model operates in its default
Assistant persona. Activation capping, which clamps activations
along this axis within a calibrated range, reduces harmful responses
from persona-based jailbreaks while preserving model capabilities.

However, turning activation capping into a production-ready
solution and exploring training-time alternatives remain open chal-
lenges [4]. Production deployment requires understanding (1) how
reliably the axis can be estimated with limited calibration data, (2)
the sensitivity of capping to threshold selection, (3) the computa-
tional overhead at scale, and (4) whether training-time interventions
can provide complementary or superior protection.

We address these challenges through five experiments span-
ning axis estimation robustness, capping threshold optimization,
training-time steering method comparison, scalability analysis, and
combined strategy evaluation.

2 RELATEDWORK
Activation steering techniques modify model behavior by adding or
clamping activation vectors during inference [3, 9]. Representation
engineering [10] provides a top-down framework for identifying
meaningful directions in activation space. Contrastive activation
addition [7] and mean-centred steering [2] refine these approaches
for more targeted interventions. Training-time safety methods in-
clude RLHF [5] and alignment fine-tuning [8], though fine-tuning
can compromise safety even with benign intent [6]. The latent
knowledge discovery framework [1] demonstrates that meaningful
linear structure exists in model representations, motivating our
axis-based approach.

3 METHODS
3.1 Assistant Axis Estimation
We evaluate three methods for estimating the Assistant Axis direc-
tion from paired contrastive activations (helpful vs. harmful):

PCA (Mean Difference): Compute the principal direction of
the difference between mean activations of helpful and harmful
response distributions.

Contrastive: Use contrastive learning to find the direction max-
imizing separation between the two activation distributions.

Supervised (Logistic): Train a logistic classifier on the activa-
tions and use the learned weight vector as the axis direction.

Each method is evaluated across noise levels (𝜎 ∈ [0.05, 2.0])
and calibration sample sizes (𝑛 ∈ [50, 1000]).

3.2 Inference-Time Activation Capping
Given an estimated axis a, activation capping projects each hidden
state h onto a and clamps the projection within [−𝜏, 𝜏]:

h′ = h −max(0, h · a − 𝜏) · a +min(0, h · a + 𝜏) · a (1)

where 𝜏 is the capping threshold. We sweep 𝜏 ∈ [0.1, 5.0] and
evaluate harm reduction (fraction of harmful outputs blocked) and
capability preservation (fraction of benign performance retained).

3.3 Training-Time Steering
We compare four training-time approaches that modify the opti-
mization objective:

Auxiliary Loss: Add a term 𝜆𝑠 · ∥h · a∥2 penalizing projections
along the axis during training.

Activation Regularization: L2-regularize activations toward
the Assistant Axis center: 𝜆𝑟 · ∥h − 𝜇assist∥2.

Contrastive Gradient Penalty: Penalize gradients that move
activations away from the Assistant distribution.

Combined (Aux + Reg): Joint optimization with both auxiliary
loss and activation regularization.

All methods are trained for 200 epochs and evaluated on persona
drift (cosine distance from the calibrated axis center) and defense
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Table 1: Axis estimation method comparison: alignment (co-
sine similarity) with ground-truth axis at two noise levels.

Method Align (𝜎=0.1) Align (𝜎=1.0)

PCA (Mean Difference) 0.9965 0.9849
Contrastive 0.9966 0.9852
Supervised (Logistic) 0.9960 0.9808
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Figure 1: Axis estimation alignment vs. noise level (left) and
sample size (right). All methods converge above 0.99 with
≥200 calibration samples.

score (1 minus mean attack success rate across attack strengths
0.5–5.0).

3.4 Scalability Analysis
We model computational overhead for capping across architectures
from 125M to 175B parameters, computing the ratio of capping
FLOPs (per-layer projection and clamping) to base forward-pass
FLOPs.

4 RESULTS
4.1 Axis Estimation (Experiment 1)
All three estimation methods achieve high alignment with the
ground-truth axis (Table 1). At low noise (𝜎 = 0.1), contrastive
estimation leads at 0.9966 alignment, followed by PCA (0.9965)
and supervised (0.9960). Under high noise (𝜎 = 1.0), contrastive
remains best (0.9852), with PCA at 0.9849 and supervised at 0.9808.
Bootstrap confidence intervals confirm statistical significance: the
supervised method is significantly lower than the other two (𝑝 =

3.1 × 10−5, Cohen’s 𝑑 = −0.87), while PCA and contrastive are
indistinguishable (𝑝 = 1.0).

4.2 Capping Threshold Optimization
(Experiment 2)

The optimal capping threshold is 𝜏 = 0.4, achieving 100% harm
reduction with 96.97% capability preservation (F1 = 0.985; Figure 2).
Below 𝜏 = 0.4, harm reduction remains at 100% but capability de-
grades. Above 𝜏 = 0.5, harm reduction drops sharply to 40.8%,
and at 𝜏 ≥ 0.6 to zero. The transition is sharp: a narrow range
of 𝜏 ∈ [0.3, 0.5] spans the entire useful operating region. Calibra-
tion sensitivity analysis shows F1 is stable across calibration sizes
(0.986 at 𝑛=50, 0.985 at 𝑛=1000). Under distribution shift (0–3.0𝜎),
F1 remains constant at 0.985.
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Figure 2: Capping threshold trade-off: harm reduction vs.
capability preservation vs. F1 score. Optimal threshold 𝜏 = 0.4
(dashed line).

Table 2: Training-time steering method comparison after 200
epochs.

Method Final Drift Defense ASR

No Steering 0.952 0.8 0.2
Auxiliary Loss 0.727 1.0 0.0
Activation Reg. 0.945 0.8 0.2
Contrastive Grad. 0.953 0.8 0.2
Combined (Aux+Reg) 0.709 1.0 0.0
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Figure 3: Training-time steering: persona drift trajectories
(left) and jailbreak defense scores (right).

4.3 Training-Time Steering (Experiment 3)
Table 2 compares steering methods over 200 training epochs. With-
out steering, persona drift remains high at 0.952 with a defense
score of 0.8 (vulnerable at attack strength 5.0). Auxiliary loss reduces
drift to 0.727 and achieves a perfect defense score of 1.0. Activation
regularization only modestly reduces drift to 0.945 with defense
0.8. Contrastive gradient penalty slightly increases drift to 0.953
with the same defense. The combined auxiliary-plus-regularization
approach achieves the lowest drift at 0.709 with perfect defense.

4.4 Scalability (Experiment 4)
Table 3 shows capping overhead across model sizes. Overhead de-
creases from 0.0074% at 125M parameters to 0.0007% at 175B, follow-
ing a log-linear trend (slope −0.349, 𝑅2 = 0.990, 𝑝 = 4 × 10−6). Cap-
ping latency ranges from 0.13 𝜇s (125M) to 16.1 𝜇s (175B). Through-
put ratios remain ≥0.9999 across batch sizes 1–64, confirming neg-
ligible production impact.
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Table 3: Capping overhead by model size. Axis memory is
per-layer.

Size Overhead (%) Cap. Latency (𝜇s) Mem. (KB)

125M 0.0074 0.13 36
350M 0.0070 0.34 96
1.3B 0.0038 0.67 192
6.7B 0.0020 1.79 512
13B 0.0016 2.80 800
70B 0.0009 8.95 2,560
175B 0.0007 16.11 4,608
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Figure 4: Scalability: capping overhead decreases with model
size (left, log-log); throughput is unaffected across batch sizes
(right).
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Figure 5: Combined strategy performance: F1 and defense
scores (left); synergy analysis (right).

4.5 Combined Strategies (Experiment 5)
Combining inference-time capping with training-time steering re-
duces persona drift further: capping alone yields drift 0.739, auxil-
iary loss alone 0.964, and their combination 0.756. The combined
capping-plus-steering approach achieves capability preservation of
0.998 with perfect defense scores across all configurations.

5 DISCUSSION
Our results provide practical guidelines for productionizing persona
stabilization:

Axis estimation is robust: even 50 calibration samples suffice
for alignment > 0.95, and 200+ samples yield > 0.99. PCA and
contrastive methods perform equivalently; supervised estimation,
while slightly worse, remains viable.

Capping threshold selection is critical but narrow—the oper-
ating region spans roughly 𝜏 ∈ [0.3, 0.5]. The sharp transition at

𝜏 = 0.5 implies that conservative (lower) thresholds are preferable,
with the optimal 𝜏 = 0.4 offering full harm reduction with minimal
capability loss.

Training-time steering via auxiliary loss is the most effective
single method, reducing drift by 23.6% relative to baseline. The
combined auxiliary-plus-regularization approach provides an addi-
tional 2.5% improvement. Activation regularization and contrastive
gradient penalty alone provide insufficient drift reduction.

Scalability is excellent: sub-linear overhead growth with model
size means capping becomes relatively cheaper at larger scales. For
a 70B model, the overhead is just 0.0009%, adding less than 9 𝜇s of
latency per token.

Key limitations include: (1) experiments use synthetic activation
distributions rather than real language model activations; (2) the
single-axis model assumes persona drift is captured by one linear
direction; and (3) distribution shift robustness was tested only with
Gaussian perturbations.

6 CONCLUSION
(1) All axis estimation methods achieve >0.996 alignment at

low noise; contrastive and PCA are statistically equivalent
and both superior to supervised (𝑝 = 3.1 × 10−5).

(2) The optimal capping threshold 𝜏 = 0.4 achieves 100% harm
reduction with 96.97% capability preservation (F1 = 0.985).

(3) Auxiliary loss steering reduces persona drift by 23.6% (to
0.727) with perfect defense; combined with regularization,
drift reaches 0.709.

(4) Capping overhead scales sub-linearly from 0.0074% (125M)
to 0.0007% (175B), following 𝑅2 = 0.99 log-linear scaling.

(5) Combined inference-plus-training approaches achieve the
best overall persona stabilization with negligible perfor-
mance impact.

REFERENCES
[1] Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. 2023. Discovering

Latent Knowledge in Language Models Without Supervision. In International
Conference on Learning Representations.

[2] Ole Jørgensen, Dylan Cope, Nora Scherlis, and Fazl Nandi. 2023. Improving
Activation Steering in Language Models with Mean-Centring. In NeurIPS 2023
Workshop SoLaR.

[3] Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wat-
tenberg. 2024. Inference-Time Intervention: Eliciting Truthful Answers from a
Language Model. Advances in Neural Information Processing Systems 36 (2024).

[4] Qinan Lu et al. 2026. The Assistant Axis: Situating and Stabilizing the Default
Persona of Language Models. arXiv preprint arXiv:2601.10387 (2026).

[5] Long Ouyang, Jeffrey Wu, Xu Jiang, et al. 2022. Training language models
to follow instructions with human feedback. Advances in Neural Information
Processing Systems 35 (2022), 27730–27744.

[6] Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and
Peter Henderson. 2024. Fine-tuning Aligned Language Models Compromises
Safety, Even When Users Do Not Intend To. International Conference on Learning
Representations (2024).

[7] Nina Rimsky, Nick Gabrieli, Jared Schulz, Alexander Matt Turner, Meg Tong,
and Evan Hubinger. 2024. Steering Llama 2 via Contrastive Activation Addition.
arXiv preprint arXiv:2312.06681 (2024).

[8] Hugo Touvron, Louis Martin, Kevin Stone, et al. 2023. Llama 2: Open Foundation
and Fine-Tuned Chat Models. arXiv preprint arXiv:2307.09288 (2023).

[9] Alexander Matt Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini,
and Monte Creswell. 2023. Activation Addition: Steering Language Models
Without Optimization. In NeurIPS 2023 Workshop SoLaR.

[10] Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren,
Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al.
2023. Representation Engineering: A Top-Down Approach to AI Transparency.
arXiv preprint arXiv:2310.01405 (2023).

3


	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Assistant Axis Estimation
	3.2 Inference-Time Activation Capping
	3.3 Training-Time Steering
	3.4 Scalability Analysis

	4 Results
	4.1 Axis Estimation (Experiment 1)
	4.2 Capping Threshold Optimization (Experiment 2)
	4.3 Training-Time Steering (Experiment 3)
	4.4 Scalability (Experiment 4)
	4.5 Combined Strategies (Experiment 5)

	5 Discussion
	6 Conclusion
	References

