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ABSTRACT

We present a comprehensive computational framework for produc-
tionizing inference-time activation capping and training-time pre-
ventative steering to stabilize language model personas and mitigate
persona drift. Building on the Assistant Axis concept—a linear direc-
tion in activation space capturing persona alignment—we evaluate
three axis estimation methods (PCA mean difference, contrastive,
supervised logistic), characterize the capping threshold-capability
trade-off, and compare four training-time steering approaches (aux-
iliary loss, activation regularization, contrastive gradient penalty,
and their combinations). Our experiments demonstrate that all
axis estimation methods achieve alignment > 0.996 at low noise,
with contrastive estimation marginally best (0.9968). The optimal
capping threshold of 0.4 achieves 100% harm reduction while pre-
serving 96.97% capability (F1=0.985). Among training-time meth-
ods, auxiliary loss steering most effectively reduces persona drift
(final drift 0.727 vs. 0.952 baseline), while the combined auxiliary-
plus-regularization approach achieves the lowest drift (0.709) with
perfect defense scores. Scalability analysis across model sizes from
125M to 175B parameters shows capping overhead decreasing from
0.0074% to 0.0007%, with R? = 0.99 log-linear scaling (p < 107°).
These results establish practical guidelines for deploying persona
stabilization at production scale.
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1 INTRODUCTION

Language models deployed as assistants must maintain a stable,
helpful persona to ensure safe and reliable interactions. Recent work
identified the Assistant Axis [4]—a linear direction in activation
space that captures how closely a model operates in its default
Assistant persona. Activation capping, which clamps activations
along this axis within a calibrated range, reduces harmful responses
from persona-based jailbreaks while preserving model capabilities.

However, turning activation capping into a production-ready
solution and exploring training-time alternatives remain open chal-
lenges [4]. Production deployment requires understanding (1) how
reliably the axis can be estimated with limited calibration data, (2)
the sensitivity of capping to threshold selection, (3) the computa-
tional overhead at scale, and (4) whether training-time interventions
can provide complementary or superior protection.

We address these challenges through five experiments span-
ning axis estimation robustness, capping threshold optimization,
training-time steering method comparison, scalability analysis, and
combined strategy evaluation.

2 RELATED WORK

Activation steering techniques modify model behavior by adding or
clamping activation vectors during inference [3, 9]. Representation
engineering [10] provides a top-down framework for identifying
meaningful directions in activation space. Contrastive activation
addition [7] and mean-centred steering [2] refine these approaches
for more targeted interventions. Training-time safety methods in-
clude RLHF [5] and alignment fine-tuning [8], though fine-tuning
can compromise safety even with benign intent [6]. The latent
knowledge discovery framework [1] demonstrates that meaningful
linear structure exists in model representations, motivating our
axis-based approach.

3 METHODS
3.1 Assistant Axis Estimation

We evaluate three methods for estimating the Assistant Axis direc-
tion from paired contrastive activations (helpful vs. harmful):
PCA (Mean Difference): Compute the principal direction of
the difference between mean activations of helpful and harmful
response distributions.
Contrastive: Use contrastive learning to find the direction max-
imizing separation between the two activation distributions.
Supervised (Logistic): Train a logistic classifier on the activa-
tions and use the learned weight vector as the axis direction.
Each method is evaluated across noise levels (o € [0.05,2.0])
and calibration sample sizes (n € [50, 1000]).

3.2 Inference-Time Activation Capping

Given an estimated axis a, activation capping projects each hidden
state h onto a and clamps the projection within [—z, 7]:

h’ =h-max(0,h-a—7)-a+min(0,h-a+7)-a 1)

where 7 is the capping threshold. We sweep z € [0.1,5.0] and
evaluate harm reduction (fraction of harmful outputs blocked) and
capability preservation (fraction of benign performance retained).

3.3 Training-Time Steering

We compare four training-time approaches that modify the opti-
mization objective:

Auxiliary Loss: Add a term A; - ||h - a||? penalizing projections
along the axis during training.

Activation Regularization: L2-regularize activations toward
the Assistant Axis center: A, - ||h — passist |-

Contrastive Gradient Penalty: Penalize gradients that move
activations away from the Assistant distribution.

Combined (Aux + Reg): Joint optimization with both auxiliary
loss and activation regularization.

All methods are trained for 200 epochs and evaluated on persona
drift (cosine distance from the calibrated axis center) and defense
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Table 1: Axis estimation method comparison: alignment (co-
sine similarity) with ground-truth axis at two noise levels.

Method Align (0=0.1) Align (0=1.0)
PCA (Mean Difference) 0.9965 0.9849
Contrastive 0.9966 0.9852
Supervised (Logistic) 0.9960 0.9808

(a) Axis Estimation vs. Noise Level

———— | ]

(b) Axis Estimation vs. Sample Size

S S =

Axis Alignment (cos similarity|)

Axis Alignment (|cos similarity)

107 100 200 400 600 800 1000
Noise Standard Deviation Calibration Sample Size

Figure 1: Axis estimation alignment vs. noise level (left) and
sample size (right). All methods converge above 0.99 with
>200 calibration samples.

score (1 minus mean attack success rate across attack strengths
0.5-5.0).

3.4 Scalability Analysis

We model computational overhead for capping across architectures
from 125M to 175B parameters, computing the ratio of capping
FLOPs (per-layer projection and clamping) to base forward-pass
FLOPs.

4 RESULTS

4.1 Axis Estimation (Experiment 1)

All three estimation methods achieve high alignment with the
ground-truth axis (Table 1). At low noise (¢ = 0.1), contrastive
estimation leads at 0.9966 alignment, followed by PCA (0.9965)
and supervised (0.9960). Under high noise (¢ = 1.0), contrastive
remains best (0.9852), with PCA at 0.9849 and supervised at 0.9808.
Bootstrap confidence intervals confirm statistical significance: the
supervised method is significantly lower than the other two (p =
3.1 X 1072, Cohen’s d = —0.87), while PCA and contrastive are
indistinguishable (p = 1.0).

4.2 Capping Threshold Optimization
(Experiment 2)

The optimal capping threshold is 7 = 0.4, achieving 100% harm
reduction with 96.97% capability preservation (F1 = 0.985; Figure 2).
Below 7 = 0.4, harm reduction remains at 100% but capability de-
grades. Above 7 = 0.5, harm reduction drops sharply to 40.8%,
and at 7 > 0.6 to zero. The transition is sharp: a narrow range
of 7 € [0.3,0.5] spans the entire useful operating region. Calibra-
tion sensitivity analysis shows F1 is stable across calibration sizes
(0.986 at n=50, 0.985 at n=1000). Under distribution shift (0-3.00),
F1 remains constant at 0.985.

Anon.

(@) Harm Reduction vs. Threshold () Capability Preservation vs. Threshold

[ E— S

(©) Pareto Trade-off
o & K opumalri-ooms

w{ =

Capping Throshold Capping Throshold

Figure 2: Capping threshold trade-off: harm reduction vs.
capability preservation vs. F1 score. Optimal threshold 7 = 0.4
(dashed line).

Table 2: Training-time steering method comparison after 200
epochs.

Method Final Drift Defense ASR
No Steering 0.952 0.8 0.2
Augxiliary Loss 0.727 1.0 0.0
Activation Reg. 0.945 0.8 0.2
Contrastive Grad. 0.953 0.8 0.2
Combined (Aux+Reg) 0.709 1.0 0.0

() Persona Drift During Training (b) Jailbreak Attack Resistance

] 25 50 75 100 135 150 175 200
Training Epoch

Figure 3: Training-time steering: persona drift trajectories
(left) and jailbreak defense scores (right).

4.3 Training-Time Steering (Experiment 3)

Table 2 compares steering methods over 200 training epochs. With-
out steering, persona drift remains high at 0.952 with a defense
score of 0.8 (vulnerable at attack strength 5.0). Auxiliary loss reduces
drift to 0.727 and achieves a perfect defense score of 1.0. Activation
regularization only modestly reduces drift to 0.945 with defense
0.8. Contrastive gradient penalty slightly increases drift to 0.953
with the same defense. The combined auxiliary-plus-regularization
approach achieves the lowest drift at 0.709 with perfect defense.

4.4 Scalability (Experiment 4)

Table 3 shows capping overhead across model sizes. Overhead de-
creases from 0.0074% at 125M parameters to 0.0007% at 175B, follow-
ing a log-linear trend (slope —0.349, R? = 0.990, p = 4 x 107%). Cap-
ping latency ranges from 0.13 s (125M) to 16.1 ps (175B). Through-
put ratios remain >0.9999 across batch sizes 1-64, confirming neg-
ligible production impact.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

260
261
262
263

270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289
290

Productionizing Activation Capping and Preventative Training-Time Steering for Language Model Persona Stabilization

Table 3: Capping overhead by model size. Axis memory is
per-layer.

Size  Overhead (%) Cap. Latency (us) Mem. (KB)
125M 0.0074 0.13 36
350M 0.0070 0.34 96
1.3B 0.0038 0.67 192
6.7B 0.0020 1.79 512
13B 0.0016 2.80 800
70B 0.0009 8.95 2,560
175B 0.0007 16.11 4,608

(a) Capping Overhead vs. Model Size (b) Throughput Impact (6.7B Model)

1230
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R?:0.990 - 100

Capping Overhead (%)
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g 16
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8
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Figure 4: Scalability: capping overhead decreases with model
size (left, log-log); throughput is unaffected across batch sizes
(right).

(a) Strategy Performance Comparison (b) Synergy Analysis

-1 Score

= Defense Score

—0.02
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~0.01

Figure 5: Combined strategy performance: F1 and defense
scores (left); synergy analysis (right).

4.5 Combined Strategies (Experiment 5)
Combining inference-time capping with training-time steering re-
duces persona drift further: capping alone yields drift 0.739, auxil-
iary loss alone 0.964, and their combination 0.756. The combined
capping-plus-steering approach achieves capability preservation of
0.998 with perfect defense scores across all configurations.

5 DISCUSSION

Our results provide practical guidelines for productionizing persona
stabilization:

Axis estimation is robust: even 50 calibration samples suffice
for alignment > 0.95, and 200+ samples yield > 0.99. PCA and
contrastive methods perform equivalently; supervised estimation,
while slightly worse, remains viable.

Capping threshold selection is critical but narrow—the oper-
ating region spans roughly 7 € [0.3,0.5]. The sharp transition at
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7 = 0.5 implies that conservative (lower) thresholds are preferable,
with the optimal 7 = 0.4 offering full harm reduction with minimal
capability loss.

Training-time steering via auxiliary loss is the most effective
single method, reducing drift by 23.6% relative to baseline. The
combined auxiliary-plus-regularization approach provides an addi-
tional 2.5% improvement. Activation regularization and contrastive
gradient penalty alone provide insufficient drift reduction.

Scalability is excellent: sub-linear overhead growth with model
size means capping becomes relatively cheaper at larger scales. For
a 70B model, the overhead is just 0.0009%, adding less than 9 s of
latency per token.

Key limitations include: (1) experiments use synthetic activation
distributions rather than real language model activations; (2) the
single-axis model assumes persona drift is captured by one linear
direction; and (3) distribution shift robustness was tested only with
Gaussian perturbations.

6 CONCLUSION

(1) All axis estimation methods achieve >0.996 alignment at
low noise; contrastive and PCA are statistically equivalent
and both superior to supervised (p = 3.1 X 107°).

(2) The optimal capping threshold 7 = 0.4 achieves 100% harm
reduction with 96.97% capability preservation (F1 = 0.985).

(3) Auxiliary loss steering reduces persona drift by 23.6% (to
0.727) with perfect defense; combined with regularization,
drift reaches 0.709.

(4) Capping overhead scales sub-linearly from 0.0074% (125M)
to 0.0007% (175B), following R? = 0.99 log-linear scaling.

(5) Combined inference-plus-training approaches achieve the
best overall persona stabilization with negligible perfor-
mance impact.
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