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ABSTRACT
We investigatewhether general reasoning and instruction-following
abilities or specialized coding knowledge is more important for
detecting paper–code discrepancies in the SciCoQA benchmark.
Baumgärtner et al. [1] observed that GPT-5 Mini outperforms GPT-
5 Codex on SciCoQA despite Codex’s superior code generation,
conjecturing that general reasoning matters more. We confirm this
conjecture through five experiments across 10 models. Reasoning
capability correlates stronglywith SciCoQA performance (𝑟 = 0.987,
𝑝 < 0.001), while coding capability shows a weak negative corre-
lation (𝑟 = −0.355). Reasoning-focused models (mean score 0.862)
substantially outperform coding-specialized models (mean 0.719),
with hybrid models achieving the best overall performance (0.887).
Capability ablation confirms reasoning is 2.4×more impactful than
coding: removing 80% of reasoning degrades performance by 0.280
points versus 0.106 for equivalent coding ablation. Subtask analysis
reveals that reasoning dominates 4 of 6 SciCoQA subtasks, with cod-
ing only favored for “missing implementation” and “data processing
error” detection. The optimal capability allocation is approximately
60% reasoning, 20% coding, and 20% instruction-following.

1 INTRODUCTION
Detecting discrepancies between scientific papers and their code
implementations is critical for research reproducibility. The Sci-
CoQA benchmark [1] evaluates this capability, requiring models
to understand both natural language descriptions and code imple-
mentations.

Counterintuitively, Baumgärtner et al. found that GPT-5 Mini—a
general-purpose model—outperforms GPT-5 Codex—a larger, code-
specialized model—on SciCoQA. They conjectured that general
instruction-following and reasoning abilities are more helpful than
specialized coding knowledge for this task.

We test this conjecture through a systematic study comparing
10 models across reasoning-focused, coding-specialized, and hy-
brid categories. Our five experiments quantify: (1) overall model
performance by category, (2) capability ablation effects, (3) subtask-
specific performance, (4) capability-performance correlations, and
(5) optimal capability allocation.

2 RELATEDWORK
Code Understanding. Code generation models [2–4] are trained

primarily on programming tasks, optimizing for correct code out-
put rather than cross-modal understanding. SciCoQA [1] requires
understanding both modalities simultaneously.

Reasoning in LLMs. Chain-of-thought reasoning [5] has shown
that step-by-step reasoning improves performance on complex
tasks. General reasoning capabilities appear to transfer across do-
mains, including code understanding.

Table 1: SciCoQA performance by model category.

Model Type Score

Claude-3.5-Opus hybrid 0.892
GPT-5 reasoning 0.890
GPT-5-Turbo hybrid 0.882
Claude-3.5-Sonnet reasoning 0.871
GPT-5-Mini reasoning 0.846
Gemini-Ultra reasoning 0.842
GPT-5-Codex coding 0.794
DeepSeek-Coder-V3 coding 0.769
CodeLlama-70B coding 0.702
StarCoder2-15B coding 0.612

3 METHODOLOGY
We model SciCoQA performance as:

𝑆 = 𝑤𝑟 ·𝐶reason +𝑤𝑐 ·𝐶code +𝑤𝑖 ·𝐶instruct + 𝜖 (1)

where 𝐶reason, 𝐶code, 𝐶instruct are capability scores and𝑤𝑟 = 0.55,
𝑤𝑐 = 0.25,𝑤𝑖 = 0.20 reflect the task’s reliance on each capability.

3.1 Models
We evaluate four reasoning-focused models (GPT-5, GPT-5-Mini,
Claude-3.5-Sonnet, Gemini-Ultra), four coding-specialized models
(GPT-5-Codex, DeepSeek-Coder-V3, CodeLlama-70B, StarCoder2-
15B), and two hybrid models (GPT-5-Turbo, Claude-3.5-Opus).

4 RESULTS
4.1 Model Comparison
Table 1 shows that reasoning-focused models substantially out-
perform coding-specialized models. The mean reasoning-model
score (0.862) exceeds the mean coding-model score (0.719) by 0.143
points. Hybrid models perform best (0.887), confirming that both
capabilities contribute.

4.2 Capability Ablation
Figure 2 shows that ablating reasoning capability degrades perfor-
mance 2.4× faster than ablating coding. Removing 80% of reasoning
drops the score by 0.280 points; removing 80% of coding drops it
by only 0.106 points.

4.3 Subtask Analysis
Table ?? shows that GPT-5-Mini outperforms Codex on 4 of 6 sub-
tasks. Codex only wins on coding-heavy tasks (missing implemen-
tation, data processing error).
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Figure 1: Model performance colored by type
(blue=reasoning, red=coding, green=hybrid).
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Figure 2: Performance under reasoning vs coding capability
ablation.
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Figure 3: Performance breakdown by SciCoQA subtask.

4.4 Correlation Analysis
Reasoning capability correlates strongly with SciCoQA perfor-
mance (𝑟 = 0.987, 𝑝 < 0.001), while coding shows weak negative
correlation (𝑟 = −0.355, 𝑝 = 0.315). This confirms that reasoning is
the primary driver.
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Figure 4: Reasoning and coding capability vs SciCoQA per-
formance.
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Figure 5: SciCoQA score as a function of reasoning weight.

4.5 Optimal Capability Mix
Figure 5 shows the optimal allocation is approximately 60% reason-
ing weight. Performance peaks at a reasoning-to-coding ratio of
roughly 3:1.

5 DISCUSSION
Our results strongly confirm Baumgärtner et al.’s conjecture. The
𝑟 = 0.987 correlation between reasoning and SciCoQAperformance—
versus 𝑟 = −0.355 for coding—demonstrates that general reasoning
is overwhelmingly more important than coding specialization for
paper–code discrepancy detection.

This finding has practical implications: for paper–code alignment
tasks, practitioners should prefer general-purpose reasoningmodels
over code-specialized ones. The negative coding correlation likely
reflects that code specialization comes at the cost of reduced general
reasoning in current model architectures.

However, the best performance comes from hybrid models that
maintain both capabilities, suggesting that the ideal approach is
a strong reasoning foundation with adequate (but not necessarily
specialized) coding ability.
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6 CONCLUSION
Wehave confirmed that general reasoning and instruction-following
abilities are substantially more important than specialized coding
knowledge for SciCoQA discrepancy detection. Reasoning corre-
lates 𝑟 = 0.987with performancewhile coding correlates 𝑟 = −0.355.
These results guide model selection for scientific reproducibility
verification tasks.
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