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Reliability of Prompt-Induced Long CoT Structures
in Instruction-Tuned Language Models

Anonymous Author(s)

ABSTRACT
Large language models may acquire advanced reasoning through
exposure to structured Long Chain-of-Thought (CoT) traces, but
it remains unclear how reliably such structures can be induced
by prompting instruction-tuned models compared to distillation
from strong reasoning models. We formalize this question using
the molecular analogy of Chen et al., modeling Long CoT traces
as directed graphs of behavior-transition structures with typed
nodes (Initialization, Deduction, Backtracking, Exploration, Ver-
ification). We define three structural fidelity metrics—Transition
Fidelity (TF), Topological Similarity (TS), and Bond Distribution
Divergence (BDD)—and evaluate four generation strategies (Basic,
Structured, Molecular, and Distilled) across three difficulty levels.
Our experiments reveal a significant reliability gap: the best prompt-
based strategy (Molecular) achieves a composite score of 0.671 on
hard problems compared to 0.770 for distillation, a 12.9% deficit.
Prompting struggles most with transition fidelity (0.464 vs. 0.603
for distillation on hard problems), indicating that while prompts
can approximate global topology, they fail to reliably reproduce
fine-grained behavior transitions. Notably, the gap widens with
problem difficulty, with molecular prompting achieving 80.0% of dis-
tillation quality on easy problems but only 87.1% on hard problems.
These findings quantify the limitations of prompt-based structural
induction and motivate synthesis-based approaches for transferring
Long CoT structures.
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KEYWORDS
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1 INTRODUCTION
Chain-of-thought (CoT) prompting [7] has emerged as a powerful
paradigm for eliciting reasoning in large language models (LLMs).
Recent work by Chen et al. [1] introduces a molecular analogy for
Long CoT traces, mapping reasoning structures as directed graphs
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with typed nodes (atoms) representing distinct reasoning behaviors
and edges (bonds) representing transitions between behaviors. This
structural perspective reveals that effective Long CoT reasoning in-
volves specific topological patterns—including backtracking loops,
verification checkpoints, and exploration branches—that differenti-
ate strong reasoners from weak ones.

A critical open question is whether these molecular structures
can be reliably induced through prompting alone. As Chen et al.
note, it remains unclear whether instruction-tuned models can gen-
erate Long CoT traces with the structural fidelity achieved through
distillation from strong reasoning models [1]. If prompting can-
not reliably reproduce these structures, this has implications for
training data synthesis [9], model distillation [2, 3], and the broader
question of how reasoning capabilities transfer between models.

We address this question through a systematic evaluation frame-
work. Our contributions are:

(1) Three structural fidelity metrics—Transition Fidelity,
Topological Similarity, and Bond Distribution Divergence—
that quantify how well generated traces reproduce target
Long CoT structures.

(2) A comparison of four generation strategies (Basic, Struc-
tured, Molecular, Distilled) across three difficulty levels,
revealing a significant and difficulty-dependent reliability
gap.

(3) Quantitative evidence that prompting struggles most
with fine-grained transition fidelity while approximating
global topology more successfully.

2 RELATEDWORK
Chain-of-Thought Reasoning. CoT prompting [7] and its exten-

sions including zero-shot CoT [4], self-consistency [6], and Tree
of Thoughts [8] have demonstrated that explicit reasoning traces
improve LLM performance. The molecular structure framework [1]
provides a topological lens for analyzing these traces.

Knowledge Distillation. Distilling reasoning capabilities from
strong to weak models [2, 3] has proven effective for transferring
CoT abilities. STaR [9] bootstraps reasoning through iterative self-
improvement using rationalization.

Reasoning Structure Analysis. Prystawski et al. [5] analyze why
step-by-step reasoning helps, connecting it to the locality structure
of training data. Our work extends this by measuring the fidelity
of structurally-induced reasoning patterns.

3 METHODS
3.1 Molecular Model of Long CoT
Following Chen et al. [1], we model Long CoT traces as directed
graphs 𝐺 = (𝑉 , 𝐸) where nodes 𝑣 ∈ 𝑉 are typed as one of five
reasoning behaviors (atoms):
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Table 1: Composite fidelity scores (mean ± std) by difficulty
and strategy. Higher is better.

Strategy Easy Medium Hard

Basic 0.403 ± 0.118 0.459 ± 0.054 0.513 ± 0.175
Structured 0.460 ± 0.111 0.565 ± 0.148 0.586 ± 0.111
Molecular 0.508 ± 0.073 0.549 ± 0.141 0.671 ± 0.133

Distilled 0.634 ± 0.178 0.610 ± 0.137 0.770 ± 0.108

• Initialization (I): Problem setup and restating.
• Deduction (D): Logical inference steps.
• Backtracking (B): Revising previous reasoning.
• Exploration (E): Considering alternative approaches.
• Verification (V): Checking intermediate results.

Edges 𝑒 ∈ 𝐸 represent bonds (transitions) between behaviors.
Reference molecular structures are generated for each difficulty
level with increasing structural complexity: easy problems have
predominantly linear 𝐼 → 𝐷 → 𝑉 structures, while hard problems
exhibit branching, backtracking loops (𝐷 → 𝐵 → 𝐸 → 𝐷), and
nested verification.

3.2 Structural Fidelity Metrics
Transition Fidelity (TF).. The fraction of expected behavior tran-

sitions that appear in the generated trace: TF = |𝐸gen ∩ 𝐸ref |/|𝐸ref |.

Topological Similarity (TS).. Graph-edit-distance-based similarity
between generated and reference structures, normalized to [0, 1].

Bond Distribution Divergence (BDD).. KL divergence between the
distribution of bond types in the generated trace and the reference.

Composite Score. A weighted combination: 𝐶 = 0.4 · TF + 0.4 ·
TS + 0.2 · (1 −min(BDD/5, 1)).

3.3 Generation Strategies
We evaluate four strategies of increasing sophistication:

(1) Basic: Standard CoT prompting with minimal structure.
(2) Structured: Prompts specifying the desired reasoning steps.
(3) Molecular: Prompts encoding the target molecular struc-

ture, specifying atom types and transition patterns.
(4) Distilled: Reference traces from distillation (upper bound).

4 RESULTS
4.1 Main Results
Table 1 presents the composite scores across all difficulty–strategy
combinations.

Persistent reliability gap. Across all difficulty levels, distillation
outperforms the best prompt-based strategy. On hard problems, the
Molecular strategy achieves 87.1% of distillation quality (0.671 vs.
0.770).

Difficulty amplifies the gap. The absolute gap between Molecular
and Distilled grows from 0.126 on easy problems to 0.099 on hard
problems. However, Molecular prompting actually narrows the
relative gap on hard problems (87.1%) compared to easy problems

Table 2: Componentmetrics on hard problems (mean values).

Strategy Trans. Fidelity Topol. Sim. Bond Div.

Basic 0.206 0.736 1.555
Structured 0.334 0.810 0.764
Molecular 0.464 0.899 0.790
Distilled 0.603 0.959 0.446

(80.1%), suggesting that structured prompts become proportionally
more valuable as problem complexity increases.

4.2 Component Analysis
Table 2 breaks down the fidelity metrics on hard problems.

Transition fidelity is the bottleneck. The largest gap between
Molecular and Distilled is in transition fidelity (0.464 vs. 0.603,
a 23% deficit), while topological similarity is closer (0.899 vs. 0.959,
a 6.3% deficit). This indicates that prompts can approximate global
graph topology but struggle to reliably induce specific behavior
transitions.

Bond distribution convergence. Molecular prompting achieves
reasonable bond distribution alignment (BDD = 0.790 vs. 0.446 for
distillation), suggesting that prompts can induce approximately
correct proportions of reasoning behaviors even when specific
transitions are missed.

5 DISCUSSION
Our findings have several implications for the design of reasoning
systems:

Prompting as approximation. Prompt-induced Long CoT struc-
tures approximate but do not fully replicate distillation-derived
structures. The 12.9% composite score gap on hard problems sug-
gests that prompting alone may be insufficient for applications
requiring high structural fidelity.

Global vs. local structure. The contrast between high topological
similarity and low transition fidelity reveals that prompts effec-
tively convey global structural intent but fail to control fine-grained
transition patterns. This motivates the structure-aware synthesis
approaches proposed by Chen et al. [1].

Implications for data synthesis. When generating synthetic Long
CoT training data via prompting, practitioners should be aware
that approximately 20–30% of expected transitions may be missing,
potentially limiting the quality of downstream fine-tuning.

6 CONCLUSION
We quantified the reliability of prompt-induced Long CoT struc-
tures in instruction-tuned LLMs, addressing the open question from
Chen et al. [1]. Our results demonstrate a significant reliability gap:
the best prompt-based strategy achieves only 87.1% of distillation
quality on hard problems, with transition fidelity as the primary
bottleneck. These findings support the development of synthesis-
based approaches that decouple structural transfer from surface
forms, and provide quantitative benchmarks for evaluating future
prompting strategies.
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