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Robustness of Alignment Pretraining Under Advanced
Post-Training:
Do RLVR, Reasoning, Deliberative, and Constitutional Methods
Preserve the Safety Gap?

Anonymous Author(s)

ABSTRACT

Alignment pretraining—embedding safety-oriented text into the
pretraining corpus—has been shown to produce durable safety ben-
efits that persist through standard supervised fine-tuning (SFT)
and direct preference optimization (DPO). However, whether these
benefits survive advanced post-training methods remains an open
question. We investigate the robustness of alignment pretraining
effects across five post-training pipelines: the baseline SFT+DPO,
reinforcement learning with verifiable rewards (RLVR), reasoning-
focused post-training, deliberative alignment, and constitutional
AT (CAI). Using a controlled simulation framework spanning three
model scales (1B, 7B, 13B) and six benchmarks (ToxiGen, Truth-
fulQA, BBQ for safety; MMLU, HumanEval, GSM8K for capability),
we evaluate 30 model configurations and apply statistical testing
with bootstrap confidence intervals. Our key finding is that align-
ment pretraining effects are partially robust: all advanced methods
reduce the alignment gap relative to the SFT+DPO baseline, yet a
substantial portion persists. At 7B scale, retention ratios range from
0.7601 (CAI) to 0.8263 (Reasoning-PT), indicating that 76-83% of
the original safety advantage of alignment pretraining is retained.
Advanced methods disproportionately benefit non-aligned models
(larger safety deltas for NoAP), narrowing but never closing the
gap. The alignment tax on capabilities remains small and stable
(~1%) across all methods. These findings suggest that alignment
pretraining provides a durable foundation that complements rather
than competes with advanced post-training.
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« Computing methodologies — Neural networks; Learning
latent representations.
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1 INTRODUCTION

The alignment of large language models (LLMs) is a multi-stage
process in which safety-relevant behaviors are shaped during both
pretraining and post-training [12]. Recent work by Tice et al. [15]
demonstrated that alignment pretraining—incorporating safety-
oriented discourse into the pretraining corpus—produces durable
benefits that persist through a standard SFT+DPO post-training
pipeline. Models with alignment pretraining (AP) consistently out-
perform their non-aligned counterparts (NoAP) on safety bench-
marks, with only a small capability cost (the “alignment tax”).

However, Tice et al. explicitly note a key limitation: their study
employs a minimalist post-training pipeline following OLMo 3, and
it is unclear whether their findings would hold under the more
sophisticated post-training methods used by frontier labs. This
motivates a central open question: do the safety benefits of alignment
pretraining persist, diminish, or change when applying advanced
post-training techniques such as RLVR, reasoning-focused training,
deliberative alignment, or constitutional AI?

This question has significant practical implications. If advanced
post-training methods can fully compensate for the absence of align-
ment pretraining, then the costly process of curating and embedding
safety-oriented text during pretraining may be unnecessary. Con-
versely, if alignment pretraining provides a durable foundation that
cannot be replicated by post-training alone, then it represents an
essential component of the alignment pipeline.

We address this question through a controlled simulation frame-
work that evaluates 30 model configurations (2 pretraining con-
ditions X 5 post-training methods X 3 model scales) across six
benchmarks. Our contributions are:

(1) We provide the first systematic comparison of alignment
pretraining robustness across four advanced post-training
methods beyond SFT+DPO.

(2) We introduce the retention ratio metric—the fraction of
the baseline alignment gap preserved under advanced post-
training—and show it ranges from 0.7601 to 0.8263 at 7B
scale.

(3) We demonstrate that advanced methods disproportionately
benefit non-aligned models, narrowing the safety gap by
17-24% but never closing it.
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(4) We show that the alignment tax remains small (~1% capa-
bility cost) and stable across all post-training methods and
scales.

1.1 Related Work

Alignment pretraining. Tice et al. [15] showed that including
Al safety discourse in pretraining data produces models that are
more aligned after post-training, establishing the persistence of
pretraining-stage alignment interventions through SFT+DPO.

Post-training methods. Standard post-training combines SFT with
preference optimization via DPO [14] or RLHF [3, 12]. Advanced
methods include RLVR [8, 9], which uses verifiable rewards (e.g.,
code correctness, math answers) instead of learned reward models;
reasoning-focused post-training [5, 16, 17], which trains models
to produce explicit chain-of-thought reasoning; deliberative align-
ment [11], where models explicitly invoke safety principles during
generation; and constitutional Al [1], which uses self-critique and
revision guided by a constitution.

Safety benchmarks. We evaluate on established safety bench-
marks: ToxiGen [6] for toxicity, Truthful QA [10] for truthfulness,
and BBQ [13] for bias. Capability is measured via MMLU [7], Hu-
manEval [2], and GSM8K [4].

2 METHODS

2.1 Experimental Design
We adopt a factorial design crossing two factors:

e Alignment pretraining: AP (alignment-pretrained) vs.
NoAP (standard pretraining).

e Post-training method: SFT+DPO (baseline), RLVR, Reasoning-
PT, Deliberative, CAIL

Each combination is evaluated at three model scales (1B, 7B,
13B), yielding 2 X 5 X 3 = 30 configurations. Each configuration is
evaluated on six benchmarks with n = 500 samples per benchmark.

2.2 Post-Training Methods

SFT+DPO (Baseline). Standard supervised fine-tuning followed
by direct preference optimization [14], following the OLMo 3 pipeline
used by Tice et al. [15].

RLVR.. Reinforcement learning with verifiable rewards replaces
the learned reward model with ground-truth verification (e.g., code
execution, mathematical proofs), providing more reliable training
signal [8, 9].

Reasoning-PT. Reasoning-focused post-training trains models
to produce explicit chain-of-thought reasoning before answering,
following STaR [17] and DeepSeek-R1 [5].

Deliberative alignment. Models are trained to explicitly invoke
safety principles from their training during generation, reasoning
about whether outputs align with specified guidelines [11].

Constitutional AI (CAI).. Models self-critique and revise their
outputs according to a constitution of principles, followed by RL
training on the revised outputs [1].

Anon.

Table 1: Method summary at 7B scale: mean safety and ca-
pability scores for AP and NoAP models, alignment gaps,
alignment tax, and retention ratio.
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Method AP NoAP Safety AP NoAP Cap. Rét.
Safety Safety  Gap Cap. Cap. Gap Ratio
SFT+DPO 0.7801 0.5792 0.2009  0.5202 0.5300 —0.0098 R
RLVR 0.8229  0.6635 0.1594 0.5670 0.5766 —0.0096 0.7934
Reasoning-PT  0.8165 0.6505 0.1660  0.5809 0.5905 —0.0097 0.8%63
Deliberative 0.8404  0.6869  0.1535 0.5399 0.5499 —0.0100 0.7641
CAI 0.8492 0.6965 0.1527  0.5262 0.5365 —0.0103 0.7601
186
187
2.3 Metrics 188
Alignment gap. For each benchmark b, method m, and scale s: 189
190
Gap(b, m, s) = Scoreap(b, m,s) — Scorenoap (b, m, s) (1) o
Retention ratio. The fraction of the baseline (SFT+DPO) align- 192
ment gap preserved under advanced method m’: 193
—_ 194
Gapgapery (M, )
R(m',5) = ——— " @
Gapgyfety (SFT+DPO, 5) 19
N . 197
\.Nh?re Gapgyfety is the mean gap across safety benchmarks. R = 1 o8
indicates full retention, R = 0 indicates complete gap closure. 19
Robustness delta. The change in alignment gap from the baseline: 200
’ ’ = 201
A(m’, s) = Gapgygery (m', s) — Gapgygery (SFT+DPO, ) (3) 202
Negative values indicate that the advanced method narrows the 203
gap, 204
205
Alignment tax. The capability cost of alignment pretraining: o
Tax(m, s) = Capp(m,s) — Capyoap(m, s) 4) 207

2.4 Statistical Analysis

We employ Welch’s ¢-test for comparing AP vs. NoAP means, Co-
hen’s d for effect sizes, and bootstrap confidence intervals (npoor =

10,000, @ = 0.05) for robustness. All simulations use np. random.default?fng(42)

for reproducibility.

3 RESULTS

3.1 Safety Scores and Alignment Gap (7B)

Table 1 presents the safety and capability scores for each post-
training method at 7B scale. The alignment gap on safety is largest
for the SFT+DPO baseline (0.2009) and smallest for CAI (0.1527)
and Deliberative (0.1535).

All advanced methods improve safety scores for both AP and
NoAP models relative to SFT+DPO. However, the improvements are
consistently larger for NoAP models, which narrows the alignment
gap. CAI achieves the highest absolute safety for both AP (0.8492)
and NoAP (0.6965), while Deliberative provides the second-best
NoAP improvement.

3.2 Retention Ratios

Figure 2 shows the retention ratios at 7B scale. Reasoning-PT retains
the most of the original alignment gap (0.8263), followed by RLVR
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Safety Scores: AP vs NoAP Across Post-Training Methods (7B)

mmm Aligned Pretrained (AP)
0.9 mmm No Alignment Pretrain (NoAP)

Mean Safety Score
° o
3 ®

o
o

0.5

SFT+DPO Reasoning-PT

Deliberative
Figure 1: Safety scores for AP and NoAP models across post-

training methods at 7B scale. The gap narrows under ad-
vanced methods but remains substantial.

Alignment Gap Retention Under Advanced Post-Training (7B)

1.0
0.826
0.8 0.793 0.760
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0.2 4
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Fully Closed (0.0)
0.0-

RLVR Reasoning-PT

Deliberative CAl

Figure 2: Alignment gap retention ratios at 7B scale. All ad-
vanced methods retain 76-83% of the baseline alignment gap.

(0.7934), Deliberative (0.7641), and CAI (0.7601). No method reduces
the retention ratio below 0.76, indicating that at least three-quarters
of the alignment pretraining advantage survives all tested post-
training methods.

3.3 Robustness Deltas

Table 2 reports the robustness deltas (change in alignment gap
relative to SFT+DPO) at 7B scale. All deltas are negative, confirming
that every advanced method narrows the safety gap. CAI produces
the largest reduction (—0.0482), followed by Deliberative (—0.0474).

3.4 Per-Benchmark Analysis

Table 3 presents per-benchmark alignment gaps at 7B scale. The gap
is largest on ToxiGen across all methods and smallest on BBQ for
RLVR. Deliberative and CAI show notably uniform gap reduction
across all three safety benchmarks, suggesting broad-spectrum
effects.

Conference’17, July 2017, Washington, DC, USA

Table 2: Robustness deltas at 7B scale: change in safety align-
ment gap relative to SFT+DPO baseline. Negative values indi-
cate gap narrowing,.

Method ToxiGen TruthfulQA  BBQ  Safety Avg
RLVR —0.0428 —0.0400 —0.0416 —0.0415
Reasoning-PT ~ —0.0315 —0.0413 —-0.0318 —0.0349
Deliberative —0.0508 —0.0395 —0.0517 —0.0474
CAI —0.0516 —0.0415 —0.0513 —0.0482

0.0 Gap Reduction: Advanced Methods vs SFT+DPO Baseline (7B)

I 00240
-0.0415

Robustness Delta (Safety Gap Change)

—0.05 4

RL{/R Reasorlﬂng-PT Dellberatlve -O@ABZ
Figure 3: Robustness delta: reduction in safety alignment gap
by each advanced method relative to the SFT+DPO baseline

at 7B.

Table 3: Per-benchmark alignment gap (AP — NoAP) at 7B
scale.
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326
Method  ToxiGen TruthQA BBQ MMLU HumEv GSMSK
327
SFT+DPO 0.2107 0.1904 0.2015 —0.0107 —0.0099  —0.00875,g
RLVR 0.1679 0.1504 0.1599  —0.0087  —0.0110  —0.0090,,,
Reason. 0.1792 0.1491 0.1697 —0.0113 —0.0078 —0.0099330
Deliber. 0.1599 0.1509 0.1498 —0.0100 —0.0115 —0.0085331
CAI 0.1591 0.1489 0.1502 —-0.0084 —0.0104 —0.0122
332

3.5 Statistical Significance

All safety gaps at 7B are highly significant (all p < 1071) with
large effect sizes (Cohen’s d > 9). Table 4 reports key statistics
for ToxiGen at 7B across methods. Bootstrap 95% confidence inter-
vals exclude zero for every safety comparison, confirming robust
differences.

3.6 Scale Effects

Figure 4 shows the alignment gap across model scales. The gap
increases with scale for all methods: at SFT+DPO baseline, from
0.1640 (1B) to 0.2009 (7B) to 0.2158 (13B). Advanced methods reduce
the gap at every scale, with the largest absolute reductions at 13B.
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Table 4: Statistical tests for ToxiGen at 7B scale.

Method Diff Cohen’sd t-stat 95% CI

SFT+DPO  0.2107 14.1846 224.2784  [0.2089, 0.2126]
RLVR 0.1679 11.6586 184.3386  [0.1661, 0.1697]
Reason. 0.1792 11.9456 188.8766  [0.1774, 0.1811]
Deliber. 0.1599 10.7306 169.6653  [0.1580, 0.1617]
CAI 0.1591 10.9341 172.8837  [0.1573, 0.1609]

Alignment Gap Across Model Scales and Post-Training Methods

mmm 1B Scale
mmm 7B Scale

020 === 13B Scale

L 0.15

Safety Alignment Gap (AP - NoAP)
o o
=) i
G o

Deliberative CAI

Reasoning-PT

Figure 4: Safety alignment gap across model scales for all
post-training methods. The gap grows with scale but is con-
sistently reduced by advanced methods.

Alignment Tax: Capability Cost of Alignment Pretraining

0.000 7 — — — R S
—0.002
—0.004
—0.006
—0.008

Alignment Tax (AP - NoAP Capability)

—~0.010{ ™= 1B Scale
= 7B Scale
= 13B Scale

SFH:DPO RL{/R Reasorl\ing-PT Delibe‘ranve CAI
Figure 5: Alignment tax across methods and scales. The ca-
pability cost of alignment pretraining remains small (<1.2%)

and stable.

3.7 Alignment Tax

The alignment tax (capability cost of alignment pretraining) remains
small and negative across all conditions, ranging from —0.0070
(Reasoning-PT, 1B) to —0.0112 (Deliberative, 13B). At 7B, taxes
range from —0.0096 (RLVR) to —0.0103 (CAI), indicating that align-
ment pretraining costs less than 1.1% in capability. Advanced post-
training methods do not amplify this cost.

3.8 Safety Score Heatmap
Figure 6 provides a detailed view of per-benchmark safety scores for
AP and NoAP models, and their differences. CAI achieves the high-
est AP safety on ToxiGen (0.9092), while Reasoning-PT achieves
the highest on Truthful QA (0.8202).

Anon.

AP Safety Scores (78) Safety Gap: AP - NoAP (78)

TodGen  TumuoA  B8Q TorGen  TuuQA 880 TowGen WA 830

Figure 6: Per-benchmark safety scores at 7B scale: AP scores
(left), NoAP scores (center), and alignment gap (right).

4 DISCUSSION

4.1 Partial Robustness of Alignment
Pretraining

Our central finding is that alignment pretraining effects are par-
tially robust to advanced post-training methods. All four advanced
methods narrow the alignment gap relative to SFT+DPO, but none
eliminate it. Retention ratios of 0.76-0.83 indicate that the majority
of the alignment pretraining advantage is preserved.

This partial robustness can be understood through a comple-
mentarity lens: alignment pretraining shapes the model’s internal
representations during the foundation-building phase, creating a
safety-oriented prior that subsequent post-training builds upon
rather than overrides. Advanced methods are more effective at
adding safety capabilities (especially to NoAP models that lack
them) than at erasing safety foundations that were established dur-
ing pretraining.

4.2 Asymmetric Benefits

A striking pattern is that advanced methods provide larger safety
improvements to NoAP models than to AP models. For example, at
7B, CAI improves NoAP safety by 0.1173 (from 0.5792 to 0.6965) but
AP safety by only 0.0691 (from 0.7801 to 0.8492). This asymmetry
is expected: AP models start from a higher safety baseline and
approach ceiling effects, while NoAP models have more room for
improvement.

This finding has practical implications: organizations that cannot
afford alignment pretraining (due to data curation costs or com-
pute constraints) can partially compensate through advanced post-
training, but will not fully match the safety profile of alignment-
pretrained models.

4.3 Method Comparison

Among advanced methods, Deliberative and CAI produce the largest
gap reductions (robustness deltas of —0.0474 and —0.0482 respec-
tively), while Reasoning-PT preserves the most of the original gap
(retention ratio 0.8263). This suggests that methods with explicit
safety reasoning (Deliberative, CAI) are most effective at adding
safety capabilities to non-aligned models, while reasoning-focused
training, which primarily improves problem-solving, has the least
impact on the alignment gap.

RLVR occupies a middle ground, with a retention ratio of 0.7934
and balanced improvements to both safety and capability.
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4.4 Implications for Alignment Engineering

Our results support a “defense in depth” approach to alignment:

[9]

alignment pretraining provides a durable foundation that is complemented—

not replaced—by advanced post-training. The small and stable align-
ment tax (<1.2% capability cost) across all methods suggests that the
safety-capability tradeoff of alignment pretraining is not worsened
by advanced post-training.

4.5 Limitations

Our study uses a simulation framework rather than training actual
language models, which limits the external validity of our findings.
The ground-truth effect parameters encode domain knowledge and
assumptions that may not perfectly reflect real-world dynamics.
However, the simulation framework enables systematic exploration
of a large experimental space (30 configurations) that would be
computationally prohibitive with real models. Future work should
validate these predictions with actual model training experiments.

5 CONCLUSION

We investigated whether the safety benefits of alignment pretrain-
ing persist under advanced post-training methods, addressing an
open question raised by Tice et al. [15]. Our simulation study across
five post-training methods, three model scales, and six benchmarks
yields a clear answer: alignment pretraining is partially robust to
advanced post-training.

Advanced methods narrow the alignment gap by 17-24% at 7B
scale, with retention ratios ranging from 0.7601 (CAI) to 0.8263
(Reasoning-PT). The alignment tax on capabilities remains below
1.1% across all conditions. These findings suggest that alignment
pretraining provides a durable safety foundation that complements
advanced post-training, supporting the recommendation to invest
in alignment-aware data curation during pretraining regardless of
the post-training pipeline employed.
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