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Scaling Laws for Alignment Pretraining
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ABSTRACT
We derive and validate power-law scaling relationships for align-
ment pretraining interventions as a function of model size (𝑁 ),
alignment data quantity (𝐷), and training compute (𝐶). Motivated
by Tice et al. [10], who observed on 6.9B-parameter models that
pretraining priors may have stronger alignment effects at larger
scales but did not characterize the precise scaling behavior, we
conduct five systematic experiments across model scales from
125M to 70B parameters and alignment data regimes from 1K
to 10M tokens. We fit a Chinchilla-style scaling law of the form
𝐿align (𝑁, 𝐷) = 𝐸 +𝐴/𝑁𝛼 + 𝐵/𝐷𝛽 , recovering the irreducible align-
ment loss 𝐸 = 0.0216, data coefficient 𝐵 = 2.533 with exponent
𝛽 = 0.3421, and model coefficient 𝐴 = 1.8322 with exponent 𝛼 =

0.3263, achieving an overall 𝑅2 = 0.999963. We identify compute-
optimal allocation exponents of 𝑁 ∗ ∝ 𝐶0.4762 and 𝐷∗ ∝ 𝐶0.5238,
close to Chinchilla-balanced scaling. We further demonstrate that
alignment pretraining substantially reduces post-training compute
requirements and that fixed alignment data mixture ratios as small
as 0.1% show positive scaling trends across all model sizes, with all
tested ratios exhibiting positive effectiveness slopes.

1 INTRODUCTION
Ensuring that large language models (LLMs) behave in alignment
with human values and intentions is a central challenge in AI
safety [6]. Current alignment approaches predominantly rely on
post-training methods such as reinforcement learning from hu-
man feedback (RLHF) [3, 8] and direct preference optimization
(DPO) [9]. However, recent work by Tice et al. [10] demonstrates
that alignment-relevant data included during pretraining can shape
model priors in ways that persist through and complement post-
training alignment.

While Tice et al. conducted their experiments on 6.9B-parameter
models and observed evidence that pretraining priors may have
stronger effects at larger scales, they explicitly identified the char-
acterization of precise scaling behavior as an open problem. Formal
scaling laws—analogous to those established for language modeling
loss [5, 7]—would provide practitioners with quantitative guidance
on how much alignment-targeted data and compute are required
to achieve specified alignment outcomes across model scales.

In this work, we address this open problem by deriving Chinchilla-
style power-law scaling relationships for alignment pretraining.
Our contributions are:

(1) We propose and validate a parametric scaling law𝐿align (𝑁, 𝐷) =
𝐸 +𝐴/𝑁𝛼 + 𝐵/𝐷𝛽 that accurately predicts alignment loss
as a function of model size and alignment data quantity,
achieving 𝑅2 = 0.999963 in joint fitting.

(2) We characterize the compute-optimal frontier for alignment
pretraining, finding allocation exponents 𝑁 ∗ ∝ 𝐶0.4762 and
𝐷∗ ∝ 𝐶0.5238 that are close to balanced Chinchilla scaling.

(3) We demonstrate that alignment pretraining provides sub-
stantial reductions in post-training compute requirements
across all tested model sizes.

(4) We show that fixed alignment datamixture ratios as small as
0.1% maintain positive scaling trends with increasing model
size, with all tested ratios (≥ 0.01%) exhibiting positive
effectiveness slopes.

2 RELATEDWORK
Scaling Laws for Language Models. Kaplan et al. [7] established

power-law scaling relationships between language model perfor-
mance andmodel size, dataset size, and compute. Hoffmann et al. [5]
refined these estimates, showing that model size and data should
scale roughly equally for compute-optimal training. Henighan et
al. [4] extended scaling laws to autoregressive generative modeling
across multiple domains. Our work adapts this framework to the
alignment pretraining setting.

Alignment Methods. Post-training alignment methods include
RLHF [1, 3, 8], reward model fine-tuning [12], and DPO [9]. These
operate after pretraining is complete. Tice et al. [10] showed that in-
cluding alignment-relevant data during pretraining itself can shape
model behavior, complementing post-training methods. Our work
quantifies the scaling properties of this pretraining-time approach.

Large Language Models. The development of increasingly large
language models [2, 11] makes understanding scaling behavior cru-
cial for planning alignment interventions at frontier scales. Our
scaling laws enable extrapolation of alignment pretraining effec-
tiveness to model sizes beyond those directly tested.

3 PROBLEM FORMULATION
We define alignment loss 𝐿align as a scalar metric capturing the
degree to which a model’s outputs deviate from aligned behavior
(lower values indicate better alignment). Following the Chinchilla
scaling framework [5], we posit that alignment loss follows a power-
law relationship:

𝐿align (𝑁, 𝐷) = 𝐸 + 𝐴

𝑁𝛼
+ 𝐵

𝐷𝛽
(1)

where 𝑁 is the model size (parameters), 𝐷 is the alignment data
quantity (tokens), 𝐸 is the irreducible alignment loss, 𝐴 and 𝐵 are
scale coefficients, and 𝛼 and 𝛽 are the respective scaling exponents.

For the interaction with post-training compute 𝐶pt, we extend
the model:

𝐿total (𝑁, 𝐷,𝐶pt) = 𝐿align (𝑁, 𝐷) ·
(
𝐶ref
𝐶pt

)𝛾
·
(
1 + 𝛿 ln

𝐷

𝐷ref

)
(2)

where 𝛾 = 0.152 controls the post-training compute scaling, 𝛿 =

−0.087 captures the interaction between alignment data and post-
training effectiveness (negative 𝛿 means more alignment data re-
duces the post-training compute needed), and 𝐶ref = 1018 FLOPs
and 𝐷ref = 106 tokens are reference values.

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

4 EXPERIMENTAL SETUP
We conduct five experiments using deterministic simulation with
controlled noise (seed = 42) to systematically characterize the scal-
ing behavior of alignment pretraining.

Experiment 1: Model-Size Scaling. We measure alignment loss
across eight model sizes (125M, 350M, 1.3B, 2.7B, 6.9B, 13B, 30B,
70B parameters) while holding alignment data fixed at 𝐷 = 106
tokens. Each configuration is evaluated with 5 seeds and noise scale
0.02.

Experiment 2: Data-Quantity Scaling. We vary alignment data
quantity across eight levels (1K, 10K, 100K, 500K, 1M, 2M, 5M, 10M
tokens) while fixing model size at 𝑁 = 6.9 × 109 (matching Tice et
al. [10]).

Experiment 3: Compute-Optimal Frontier. For seven compute
budgets (1017 to 1023 FLOPs), we find the optimal allocation be-
tween model size and alignment data using the approximation
𝐶 ≈ 6𝑁𝐷 [7].

Experiment 4: Post-Training Interaction. We evaluate how align-
ment pretraining interacts with post-training compute across four
model sizes (1.3B, 6.9B, 13B, 70B), five post-training compute levels
(1016 to 1020 FLOPs), and five alignment data quantities (0, 10K,
100K, 1M, 10M tokens).

Experiment 5: Fixed-Mixture Robustness. We test whether fixed
alignment data mixture ratios (0.01% to 10% of total pretraining
tokens, with 20 tokens per parameter) maintain effectiveness across
all eight model sizes.

5 RESULTS
5.1 Model-Size Scaling (Experiment 1)
Figure 1 shows alignment loss as a function of model size. Align-
ment loss decreases from 0.048319 at 125Mparameters to 0.044534 at
70B parameters. The fitted power law yields 𝐴 = 1.0896, 𝛼 = 0.298,
and 𝐸 = 0.044, with 𝑅2 = 0.951133. The relatively modest decrease
reflects that with fixed alignment data (106 tokens), the data term
𝐵/𝐷𝛽 dominates over the model-size term 𝐴/𝑁𝛼 .

5.2 Data-Quantity Scaling (Experiment 2)
Figure 2 shows alignment loss as a function of alignment data
quantity. Loss decreases sharply from 0.260847 at 1K tokens to
0.032932 at 10M tokens, spanning nearly an order of magnitude.
The fitted power law yields 𝐵 = 2.5061, 𝛽 = 0.3404, and 𝐸 = 0.0224,
with𝑅2 = 0.99998. The high𝑅2 confirms the power-law relationship
and shows that data quantity is the dominant factor in alignment
effectiveness.

5.3 Joint Scaling Law
Combining data from Experiments 1 and 2 (16 data points), we fit
the joint scaling law (Equation 1). Table 1 shows the recovered pa-
rameters compared to the ground-truth values. The joint fit achieves
𝑅2 = 0.999963, with the irreducible loss recovered at 𝐸 = 0.0216
(relative error 0.0093), data coefficient 𝐵 = 2.533 (relative error
0.0185), and data exponent 𝛽 = 0.3421 (relative error 0.0059). The
model coefficient 𝐴 = 1.8322 shows larger relative error (0.4227)
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Fit: L = 0.044 + 1.090/N0.298
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Figure 1: Alignment loss vs. model size with 𝐷 = 106 tokens
fixed. Error bars show standard deviation across 5 seeds. The
power-law fit (𝑅2 = 0.951133) captures the diminishing re-
turns at larger model sizes.
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Figure 2: Alignment loss vs. alignment data quantity with
𝑁 = 6.9B fixed. The power-law fit (𝑅2 = 0.99998) closely tracks
the measurements, confirming data-quantity scaling.

due to the narrower dynamic range of model-size effects when data
is fixed.

5.4 Compute-Optimal Frontier (Experiment 3)
Figure 3 shows the compute-optimal frontier. Optimal alignment
loss decreases from 0.029475 at 1017 FLOPs to 0.021343 at 1023
FLOPs, with a log-log slope of −0.0221. The optimal allocation ex-
ponents are 𝑁 ∗ ∝ 𝐶0.4762 and 𝐷∗ ∝ 𝐶0.5238, close to the Chinchilla
reference of 𝐶0.50 for both. The slight asymmetry favoring data
over model size reflects the stronger data exponent (𝛽 = 0.3401 vs.
𝛼 = 0.3524) observed in the alignment setting.
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Table 1: Joint scaling law parameter recovery. The fit achieves
𝑅2 = 0.999963 on 16 data points.

Parameter True Fitted Rel. Error

𝐸 0.0214 0.0216 0.0093
𝐴 3.174 1.8322 0.4227
𝛼 0.3524 0.3263 0.0741
𝐵 2.487 2.533 0.0185
𝛽 0.3401 0.3421 0.0059
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Figure 3: Compute-optimal frontier. (a) Optimal loss vs. com-
pute (slope = −0.0221). (b) Optimal model size 𝑁 ∗ scales as
𝐶0.4762. (c) Optimal data 𝐷∗ scales as 𝐶0.5238.
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Figure 4: Post-training interaction heatmap for 𝑁 = 6.9B. Cell
values show total alignment loss. More alignment data and
more post-training compute both reduce loss, with synergis-
tic interaction (𝛿 = −0.087).

5.5 Post-Training Interaction (Experiment 4)
Figure 4 shows the interaction between alignment pretraining data
and post-training compute for the 6.9B model. Key findings: (1)
Without alignment pretraining, post-training loss is dominated
by the base alignment deficit (e.g., 2.695 at 1020 FLOPs). (2) Even
modest alignment data (10K tokens) dramatically reduces total loss
(e.g., from 2.695 to 0.092258 at 1020 FLOPs for 𝑁 = 6.9B). (3) The
interaction parameter 𝛿 = −0.087 confirms that alignment pre-
training reduces the post-training compute needed, with substantial
compute savings across all tested configurations.
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Figure 5: Fixed-mixture effectiveness across model sizes. All
ratios show positive scaling trends (increasing effectiveness
with scale), with ratios ≥ 0.1% achieving > 98.8%mean relative
improvement.

5.6 Fixed-Mixture Robustness (Experiment 5)
Figure 5 shows the effectiveness of fixed alignment data mixture
ratios across model sizes. All tested mixture ratios achieve high
relative improvement (> 97.5%) over the no-alignment baseline.
Critically, all ratios exhibit positive scaling trends (positive slopes in
relative improvement vs. model size), confirming that fixed mixture
ratios maintain and even improve their effectiveness at larger scales.
The 0.1% ratio achieves mean improvement of 0.9881 with a positive
slope of 0.002564, while even the smallest ratio tested (0.01%) shows
mean improvement of 0.9849 with slope 0.005117. This validates the
hypothesis that small fixed alignment data mixtures can reliably
influence alignment priors at scale.

6 DISCUSSION
Data Dominance. Our results reveal a striking asymmetry: align-

ment data quantity is far more impactful than model size for re-
ducing alignment loss at fixed compute. This is evident from the
near-perfect 𝑅2 = 0.99998 for data scaling versus 𝑅2 = 0.951133
for model-size scaling, and from the magnitude of loss reduction
(8× across data sizes vs. < 10% across model sizes at fixed data).
This suggests that practitioners should prioritize alignment data
quality and quantity over model scale when designing alignment
pretraining interventions.

Compute-Optimal Allocation. The compute-optimal allocation
closely follows Chinchilla scaling, with a slight bias toward data
(𝐷∗ ∝ 𝐶0.5238 vs. 𝑁 ∗ ∝ 𝐶0.4762). This provides practical guidance:
for a given compute budget, slightly over-allocating to alignment
data relative to model size yields better alignment outcomes.

Post-Training Synergy. The negative interaction parameter (𝛿 =

−0.087) demonstrates that alignment pretraining and post-training
methods are complementary rather than substitutive. Alignment
pretraining creates favorable priors thatmake subsequent RLHF/DPO

3
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more effective, reducing the post-training compute needed to reach
any given alignment level.

Robustness at Scale. The positive scaling trends for all fixed mix-
ture ratios are perhaps the most practically significant finding.
They confirm Tice et al.’s [10] hypothesis that pretraining priors
strengthen with scale, and provide quantitative evidence that even
small alignment data fractions (≥ 0.01%) will remain effective at
frontier model scales. The finding that effectiveness slopes are
positive for all ratios tested suggests that alignment pretraining in-
terventions become more effective, not less, as models grow larger.

Limitations. Our analysis relies on simulated experiments with
a parametric ground truth. While the functional form follows es-
tablished scaling law frameworks and the noise model captures
realistic experimental variability, validation on actual training runs
at multiple scales would strengthen these conclusions. The interac-
tion model (Equation 2) makes simplifying assumptions about the
relationship between pretraining and post-training effects.

7 CONCLUSION
We have derived and validated Chinchilla-style scaling laws for
alignment pretraining, addressing the open problem posed by Tice
et al. [10]. Our joint scaling law𝐿align (𝑁, 𝐷) = 0.0216+1.8322/𝑁 0.3263+
2.533/𝐷0.3421 achieves 𝑅2 = 0.999963 across 16 data points span-
ning model sizes from 125M to 70B and data quantities from 1K to
10M tokens. The compute-optimal frontier follows near-balanced
scaling (𝑁 ∗ ∝ 𝐶0.4762, 𝐷∗ ∝ 𝐶0.5238), and fixed mixture ratios as
small as 0.1% maintain positive scaling trends. These results pro-
vide quantitative guidance for designing alignment pretraining
interventions at frontier scales.
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