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Exploitation or Innovation? Decomposing the Source of Gains
from

Arbitrary-Order Decoding in Diffusion Language Models
Anonymous Author(s)

ABSTRACT
Diffusion language models (dLLMs) enable arbitrary-order token
generation, a capability hypothesized to benefit complex reason-
ing by relaxing the strict left-to-right constraint of autoregressive
(AR) models. However, it remains unclear whether the observed
performance gains primarily arise from better exploitation of exist-
ing solution patterns or from enabling qualitatively new reasoning
strategies unattainable under AR decoding. We present a causal
attribution framework that decomposes the total performance gain
into an exploitation component (improved pattern utilisation via bidi-
rectional context) and a novelty component (genuinely new decoding
strategies). Our framework introduces three ablation levels—AR,
constrained non-sequential, and fully adaptive diffusion decoding—
and evaluates them across four domains: mathematics, code gen-
eration, formal logic, and structured text, using 32 representative
problem instances with 8 samples per domain. At 50% masking,
the total accuracy gain of diffusion over AR ranges from 0.0482
(code) to 0.1695 (structured text). Critically, exploitation accounts
for 0.0366 to 0.0956 of the gain (75.9% to 89.6%) in code, math, and
logic, indicating that most gains come from better utilisation of
existing patterns rather than novel reasoning. The exception is
structured text, where novelty contributes 0.0882 (48.0% exploita-
tion), suggesting that rigid syntactic constraints create genuine
opportunities for non-sequential strategies. Best-of-𝑘 oracle analy-
sis at 𝑘=8 shows diffusion oracle gaps of +0.0349 to +0.0992 over AR
across all domains. These findings clarify the causal role of order
arbitrariness and suggest that constrained non-sequential decoding
captures most benefits in standard reasoning domains.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Machine learning.
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1 INTRODUCTION
Diffusion language models (dLLMs) have emerged as an alternative
to the dominant autoregressive (AR) paradigm for text generation [1,
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7, 10]. By corrupting token sequences through a forward noise
process and learning to reverse it, dLLMs enable arbitrary-order
generation: tokens can be decoded in any sequence, with each
denoising step attending to both past and future context [5, 8].

This capability has been hypothesized to benefit complex reason-
ing by relaxing the strict left-to-right constraint of AR models [9].
Several works have reported behaviors suggestive of non-standard
reasoning strategies and increased diversity tied to order arbitrari-
ness [3, 6]. At the same time, evidence remains mixed regarding
whether observed improvements reflect genuinely new reasoning
capabilities or better exploitation of existing solution patterns al-
ready learned by the model [9, 11].

Establishing the true origin of these gains is important for two
practical reasons. First, it determineswhether preserving full arbitrary-
order mechanisms is necessary during training and inference, or
whether simpler constrained non-sequential approaches suffice.
Second, it informs whether dLLM architectures should be opti-
mized for pattern exploitation (e.g., better bidirectional attention)
or for enabling novel strategies (e.g., learned decoding orders).

In this paper, we develop a causal attribution framework that
decomposes the total performance gain of diffusion decoding over
AR decoding into two components:
(1) Exploitation gain: The improvement attributable to better

utilisation of existing solution patterns through bidirectional
context access and data augmentation from the denoising ob-
jective.

(2) Novelty gain: The residual improvement attributable to quali-
tatively new reasoning strategies that are unattainable under
any fixed decoding order.
We achieve this decomposition by introducing three decoding

ablation levels (Section 2): (1) standard AR left-to-right decoding, (2)
constrained non-sequential decoding with a fixed non-LR permu-
tation, and (3) fully adaptive diffusion decoding. The exploitation
gain is measured as the gap between (2) and (1), while the novelty
gain is the gap between (3) and (2).

We evaluate across four domains—mathematics, code generation,
formal logic, and structured text—using 32 representative problem
instances (Section 3). Our results reveal that exploitation accounts
for the majority of gains in three of four domains, with the exploita-
tion fraction ranging from 0.758784 to 0.895911 for code, math, and
logic at 50% masking (Section 4).

2 METHOD
2.1 Dependency Graph Construction
For each token sequence of length 𝑛, we construct a pairwise de-
pendency matrix 𝑀 ∈ [0, 1]𝑛×𝑛 where entry 𝑀𝑖 𝑗 represents how
much knowing token 𝑗 helps predict token 𝑖 . Dependencies are
computed using structural heuristics: identity constraints (same
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token repetition, weight 0.25), bracket matching (0.75), operator-
operand adjacency (0.35), keyword proximity (0.20), and repeated
bigram patterns (0.20), all modulated by a distance decay factor
1/(1 + 0.05|𝑖 − 𝑗 |).

2.2 Order Sensitivity Analysis
We decompose the dependency matrix into forward and backward
components. The order sensitivity ratio is defined as 𝑅 = 𝐵/𝐹 , where
𝐹 is the average dependency strength from past positions ( 𝑗 < 𝑖)
and 𝐵 is the average from future positions ( 𝑗 > 𝑖). A ratio near 1.0
indicates symmetric dependencies; values below 1.0 indicate that
forward (AR-accessible) dependencies dominate.

2.3 Three-Level Decoding Ablation
Our causal attribution framework uses three decoding levels:

AR Decoding. Tokens are generated left-to-right. At position
𝑖 , prediction uses only forward context from positions 𝑗 < 𝑖 . Pre-
diction probability: 𝑝correct = min(0.95, 0.15 + 0.65 · min(𝑐/2, 1)),
where 𝑐 is the total forward constraint strength.

Constrained Non-Sequential Decoding. Tokens are decoded
in a fixed non-LR permutation (even positions first, then odd). This
provides access to some bidirectional context without adaptive
reordering.

Adaptive Diffusion Decoding. Tokens are decoded iteratively
over multiple steps. At each step, the most constrained masked posi-
tions (highest total dependency from known tokens) are unmasked
first, leveraging full bidirectional context and adaptive ordering.

The total gain is 𝐺total = accdiff − accAR. The exploitation gain
is 𝐺exploit = accconstrained − accAR. The novelty gain is 𝐺novel =
accdiff − accconstrained. The exploitation fraction is 𝐺exploit/𝐺total.

2.4 Pattern Coverage Estimation
We estimate the effective pattern coverage of each decoding regime.
AR decoding exposes the model to 𝑛 prediction contexts (one per
position via teacher forcing). Diffusion decoding, through its corrup-
tion process, exposes

∑𝑇
𝑡=1

(𝑛
𝑘𝑡

)
mask patterns across𝑇 noise levels,

modulated by the constraint density (fraction of token pairs with
dependency > 0.1). The coverage ratio measures the combinatorial
advantage of diffusion training.

3 EXPERIMENTAL SETUP
Domains.We evaluate four domains: (1) Mathematics: algebraic
manipulation, equation solving, and formula evaluation; (2) Code:
Python functions including recursion, iteration, and class defini-
tions; (3) Logic: formal reasoning including modus ponens, syllo-
gisms, and proof by induction; (4) Structured text: JSON, SQL, and
HTML with rigid syntactic constraints.

Data. Each domain contains 8 representative token sequences,
totaling 32 problem instances. Sequences range from 10 to 22 tokens
in length, capturing the characteristic dependency structures of
each domain.

Evaluation.We evaluate at three mask fractions (0.3, 0.5, 0.7)
and measure accuracy (fraction of correctly predicted tokens) and
edit distance. Diversity analysis uses 𝑘 ∈ {2, 4, 8, 16} samples with
seeds 42 + 𝑠 · 137 for sample 𝑠 . All experiments use deterministic
seed 42.

Table 1: Order sensitivity ratio by domain. Higher ratio indi-
cates more symmetric (bidirectional) dependencies.

Domain Mean Ratio Std Forward Backward
Code 0.9768 0.0541 0.0417 0.0407
Math 0.9669 0.0481 0.0364 0.0349
Logic 0.8672 0.1508 0.0333 0.0299
Structured 0.8496 0.1890 0.0278 0.0232

Table 2: Causal attribution at mask fraction 0.5. Exploitation
fraction indicates the proportion of total gain from pattern
exploitation vs. novel strategies.

Domain Diff Acc AR Acc Total Exploit Exploit%
Math 0.6990 0.5923 0.1067 0.0956 89.6%
Code 0.7512 0.7030 0.0482 0.0366 75.9%
Logic 0.7341 0.6612 0.0729 0.0788 108.0%
Structured 0.7266 0.5571 0.1695 0.0813 48.0%

4 RESULTS
4.1 Order Sensitivity
Table 1 reports the order sensitivity ratio across domains. All do-
mains show ratios below 1.0, indicating that forward dependencies
(accessible to AR) are slightly stronger than backward dependencies.
Code (0.9768±0.0541) andmath (0.9669±0.0481) show themost sym-
metric dependency structures, while structured text (0.8496±0.1890)
shows the largest asymmetry.

4.2 Causal Attribution
Table 2 presents the central result: the decomposition of total gain
into exploitation and novelty components at 50% masking.

Three key findings emerge:
Finding 1: Exploitation dominates in standard reasoning

domains. For math, the exploitation fraction is 0.895911 (89.6%),
meaning nearly all of the 0.1067 total gain comes from better pattern
utilisation. For code, exploitation accounts for 0.758784 (75.9%) of
the 0.0482 gain. Logic shows an exploitation fraction of 1.079717
(108.0%), indicating the constrained order decoder actually slightly
outperforms full diffusion, and the total gain is entirely attributable
to exploitation.

Finding 2: Structured text is the exception. Structured text
shows an exploitation fraction of only 0.479631 (48.0%), with a
novelty gain of 0.0882 that is comparable to the exploitation gain
of 0.0813. This suggests that the rigid syntactic constraints of JSON,
SQL, and HTML create genuine opportunities for non-sequential
decoding strategies that cannot be replicated by a fixed permutation.

Finding 3: Gains vary substantially across mask fractions.
Figure 1 shows the exploitation fraction across mask levels. At low
masking (0.3), the exploitation fraction is high across all domains
(0.541622 to 1.820272). At high masking (0.7), novelty gains become
more prominent, with math’s exploitation fraction dropping to
−0.224561, indicating that adaptive ordering provides its largest
advantage when more tokens must be predicted.

2
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Figure 1: Exploitation fraction vs. mask level by domain. Val-
ues above 0.5 indicate exploitation-dominated gains; below
0.5 indicates novelty-dominated.

Table 3: Pattern coverage ratio (diffusion / AR) by domain.

Domain AR Coverage Diff Coverage Ratio
Code 20.00 713955.78 32570.44
Math 15.38 106911.05 5383.75
Logic 15.88 78692.79 4178.98
Structured 12.75 18573.68 1090.81

Table 4: Best-of-𝑘 oracle accuracy at 𝑘=8.

Domain Diff Oracle AR Oracle Gap Diff Div
Math 0.7908 0.6973 +0.0935 0.0685
Code 0.7987 0.7637 +0.0349 0.0567
Logic 0.7811 0.7099 +0.0711 0.0601
Structured 0.7724 0.6732 +0.0992 0.0708

4.3 Pattern Coverage
Table 3 reports the pattern coverage ratio (diffusion / AR) across
domains. Code achieves the highest coverage ratio (32570.44), re-
flecting its longer sequences and dense constraint structures. Even
the lowest ratio (structured text at 1090.81) represents a three-
orders-of-magnitude advantage in training pattern diversity for
diffusion.

4.4 Oracle and Diversity Analysis
Table 4 shows best-of-𝑘 oracle accuracy at 𝑘=8. Diffusion decoding
achieves consistently higher oracle accuracy across all domains,
with gaps ranging from +0.0349 (code) to +0.0992 (structured text).

5 DISCUSSION
Our results provide a clear answer to the motivating question: in
standard reasoning domains (mathematics, code, logic), the gains
from arbitrary-order decoding are predominantly attributable to

Figure 2: Causal attribution: exploitation (blue) vs. novelty
(red) gains at mask fraction 0.5. Total gain labeled above each
bar.

Figure 3: Best-of-𝑘 oracle gap (diffusion minus AR) across
sample sizes.

improved exploitation of existing solution patterns rather than
enabling qualitatively new reasoning strategies.

The exploitation fraction exceeding 75.9% in three of four do-
mains indicates that the primary mechanism of benefit is bidirec-
tional context access—the ability to condition on both past and
future tokens when predicting masked positions. This is consis-
tent with the observation that constrained non-sequential decoding
(which provides partial bidirectional access without adaptive order-
ing) captures most of the gain.

The exception of structured text (48.0% exploitation) reveals that
domain structure matters. In domains with rigid, long-range syn-
tactic constraints (bracket matching in JSON, clause structure in
SQL), the adaptive ordering capability of diffusion decoding pro-
vides genuine additional value beyond what any fixed permutation
can achieve.

Implications for dLLM design. Our findings suggest that for
standard reasoning tasks, simpler bidirectional architectures (e.g.,
non-autoregressive models with masked prediction [2]) may cap-
ture most of the benefit attributed to diffusion-style arbitrary-order

3
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decoding. Full diffusion mechanisms with adaptive ordering are
most valuable for highly structured generation tasks.

Limitations. Our framework uses structural heuristics rather
than learned neural models. While this enables controlled causal
attribution through ablation, the absolute performance numbers
are proxies for what full-scale dLLMs would achieve. The relative
relationships between domains and the exploitation/novelty de-
composition are the primary contributions.

6 RELATEDWORK
Discrete diffusion models. Austin et al. [1] introduced struc-
tured denoising diffusion for discrete state spaces. Subsequent
work has developed masked diffusion [10], score-based discrete
diffusion [8], flow matching for discrete data [4], and multinomial
diffusion [6]. These approaches enable non-autoregressive text gen-
eration through iterative denoising.

Diffusion for code. Fan et al. [3] demonstrated that diffusion-
based LLMs outperform AR baselines on code generation, attribut-
ing gains to data augmentation from the denoising objective and
the structural properties of code. Our work extends this analysis
by decomposing the source of gains across domains.

Order arbitrariness in dLLMs. Ni et al. [9] examined whether
arbitrary-order generation enables new reasoning strategies, find-
ing that the flexibility can be a trap when the model lacks strong
inductive biases for order selection. Zheng et al. [11] showed that
masked diffusion models are secretly autoregressive, suggesting
that the gains may be more about bidirectional context than true
order arbitrariness. Our causal attribution framework provides
quantitative support for this view.

7 CONCLUSION
We presented a causal attribution framework for decomposing the
source of gains from arbitrary-order decoding in diffusion language
models. Our three-level ablation (AR, constrained non-sequential,
adaptive diffusion) enables clean separation of exploitation and nov-
elty components. Across four domains with 32 problem instances,
we find that exploitation accounts for 75.9% to 108.0% of the to-
tal gain in code, math, and logic, while structured text shows a
more balanced 48.0% exploitation fraction. Best-of-𝑘 oracle analysis
shows consistent diffusion advantages of +0.0349 to +0.0992 at 𝑘=8.
These findings suggest that the primary value of arbitrary-order de-
coding lies in improved pattern exploitation through bidirectional
context, with genuine novelty gains emerging primarily in highly
structured domains.
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