

1 Exploitation or Innovation? Decomposing the Source of Gains 2 from 3 Arbitrary-Order Decoding in Diffusion Language Models 4

5 Anonymous Author(s)
6
7

8 ABSTRACT

9 Diffusion language models (dLLMs) enable arbitrary-order token
10 generation, a capability hypothesized to benefit complex reasoning
11 by relaxing the strict left-to-right constraint of autoregressive
12 (AR) models. However, it remains unclear whether the observed
13 performance gains primarily arise from better exploitation of existing
14 solution patterns or from enabling qualitatively new reasoning
15 strategies unattainable under AR decoding. We present a causal
16 attribution framework that decomposes the total performance gain
17 into an *exploitation component* (improved pattern utilisation via bi-
18 directional context) and a *novelty component* (genuinely new decoding
19 strategies). Our framework introduces three ablation levels—AR,
20 constrained non-sequential, and fully adaptive diffusion decoding—and
21 evaluates them across four domains: mathematics, code generation,
22 formal logic, and structured text, using 32 representative
23 problem instances with 8 samples per domain. At 50% masking,
24 the total accuracy gain of diffusion over AR ranges from 0.0482
25 (code) to 0.1695 (structured text). Critically, exploitation accounts
26 for 0.0366 to 0.0956 of the gain (75.9% to 89.6%) in code, math, and
27 logic, indicating that most gains come from better utilisation of
28 existing patterns rather than novel reasoning. The exception is
29 structured text, where novelty contributes 0.0882 (48.0% exploita-
30 tion), suggesting that rigid syntactic constraints create genuine
31 opportunities for non-sequential strategies. Best-of- k oracle analysis
32 at $k=8$ shows diffusion oracle gaps of +0.0349 to +0.0992 over AR
33 across all domains. These findings clarify the causal role of order
34 arbitrariness and suggest that constrained non-sequential decoding
35 captures most benefits in standard reasoning domains.
36

37 CCS CONCEPTS

38 • Computing methodologies → Natural language processing;
39 Machine learning.

40 KEYWORDS

41 diffusion language models, arbitrary-order decoding, causal attribution,
42 autoregressive models, reasoning

43 ACM Reference Format:

44 Anonymous Author(s). 2026. Exploitation or Innovation? Decomposing the
45 Source of Gains from Arbitrary-Order Decoding in Diffusion Language
46 Models. In *Proceedings of ACM Conference (Conference'17)*. ACM, New York,
47 NY, USA, 4 pages. <https://doi.org/10.1145/nnnnnnnnnnnnnnnn>

48 1 INTRODUCTION

49 Diffusion language models (dLLMs) have emerged as an alternative
50 to the dominant autoregressive (AR) paradigm for text generation [1,

51 *Conference'17, July 2017, Washington, DC, USA*
52 2026. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM... \$15.00
53 <https://doi.org/10.1145/nnnnnnnnnnnnnnnn>

54 7, 10]. By corrupting token sequences through a forward noise
55 process and learning to reverse it, dLLMs enable arbitrary-order
56 generation: tokens can be decoded in any sequence, with each
57 denoising step attending to both past and future context [5, 8].

58 This capability has been hypothesized to benefit complex reasoning
59 by relaxing the strict left-to-right constraint of AR models [9]. Several
60 works have reported behaviors suggestive of non-standard
61 reasoning strategies and increased diversity tied to order arbitrariness
62 [3, 6]. At the same time, evidence remains mixed regarding
63 whether observed improvements reflect genuinely new reasoning
64 capabilities or better exploitation of existing solution patterns already
65 learned by the model [9, 11].

66 Establishing the true origin of these gains is important for two
67 practical reasons. First, it determines whether preserving full arbitrary-
68 order mechanisms is necessary during training and inference, or
69 whether simpler constrained non-sequential approaches suffice.
70 Second, it informs whether dLLM architectures should be optimized
71 for pattern exploitation (e.g., better bidirectional attention)
72 or for enabling novel strategies (e.g., learned decoding orders).

73 In this paper, we develop a causal attribution framework that
74 decomposes the total performance gain of diffusion decoding over
75 AR decoding into two components:

- 76 (1) **Exploitation gain:** The improvement attributable to better
77 utilisation of existing solution patterns through bidirectional
78 context access and data augmentation from the denoising
79 objective.
80 (2) **Novelty gain:** The residual improvement attributable to qualita-
81 tively new reasoning strategies that are unattainable under
82 any fixed decoding order.

83 We achieve this decomposition by introducing three decoding
84 ablation levels (Section 2): (1) standard AR left-to-right decoding, (2)
85 constrained non-sequential decoding with a fixed non-LR permuta-
86 tion, and (3) fully adaptive diffusion decoding. The exploitation
87 gain is measured as the gap between (2) and (1), while the novelty
88 gain is the gap between (3) and (2).

89 We evaluate across four domains—mathematics, code generation,
90 formal logic, and structured text—using 32 representative problem
91 instances (Section 3). Our results reveal that exploitation accounts
92 for the majority of gains in three of four domains, with the exploita-
93 tion fraction ranging from 0.758784 to 0.895911 for code, math, and
94 logic at 50% masking (Section 4).

95 2 METHOD

96 2.1 Dependency Graph Construction

97 For each token sequence of length n , we construct a pairwise depen-
98 dency matrix $M \in [0, 1]^{n \times n}$ where entry M_{ij} represents how
99 much knowing token j helps predict token i . Dependencies are
100 computed using structural heuristics: identity constraints (same
101

117 token repetition, weight 0.25), bracket matching (0.75), operator-
 118 operand adjacency (0.35), keyword proximity (0.20), and repeated
 119 bigram patterns (0.20), all modulated by a distance decay factor
 120 $1/(1 + 0.05|i - j|)$.

122 2.2 Order Sensitivity Analysis

123 We decompose the dependency matrix into forward and backward
 124 components. The *order sensitivity ratio* is defined as $R = \bar{B}/\bar{F}$, where
 125 \bar{F} is the average dependency strength from past positions ($j < i$)
 126 and \bar{B} is the average from future positions ($j > i$). A ratio near 1.0
 127 indicates symmetric dependencies; values below 1.0 indicate that
 128 forward (AR-accessible) dependencies dominate.

130 2.3 Three-Level Decoding Ablation

131 Our causal attribution framework uses three decoding levels:

132 **AR Decoding.** Tokens are generated left-to-right. At position
 133 i , prediction uses only forward context from positions $j < i$. Pre-
 134 diction probability: $p_{\text{correct}} = \min(0.95, 0.15 + 0.65 \cdot \min(c/2, 1))$,
 135 where c is the total forward constraint strength.

136 **Constrained Non-Sequential Decoding.** Tokens are decoded
 137 in a fixed non-LR permutation (even positions first, then odd). This
 138 provides access to some bidirectional context without adaptive
 139 reordering.

140 **Adaptive Diffusion Decoding.** Tokens are decoded iteratively
 141 over multiple steps. At each step, the most constrained masked positions
 142 (highest total dependency from known tokens) are unmasked first,
 143 leveraging full bidirectional context and adaptive ordering.

144 The *total gain* is $G_{\text{total}} = \text{acc}_{\text{diff}} - \text{acc}_{\text{AR}}$. The *exploitation gain*
 145 is $G_{\text{exploit}} = \text{acc}_{\text{constrained}} - \text{acc}_{\text{AR}}$. The *novelty gain* is $G_{\text{novel}} =$
 146 $\text{acc}_{\text{diff}} - \text{acc}_{\text{constrained}}$. The *exploitation fraction* is $G_{\text{exploit}}/G_{\text{total}}$.

148 2.4 Pattern Coverage Estimation

149 We estimate the effective pattern coverage of each decoding regime.
 150 AR decoding exposes the model to n prediction contexts (one per
 151 position via teacher forcing). Diffusion decoding, through its corrup-
 152 tion process, exposes $\sum_{t=1}^T \binom{n}{k_t}$ mask patterns across T noise levels,
 153 modulated by the constraint density (fraction of token pairs with
 154 dependency > 0.1). The coverage ratio measures the combinatorial
 155 advantage of diffusion training.

157 3 EXPERIMENTAL SETUP

158 **Domains.** We evaluate four domains: (1) *Mathematics*: algebraic
 159 manipulation, equation solving, and formula evaluation; (2) *Code*:
 160 Python functions including recursion, iteration, and class definitions;
 161 (3) *Logic*: formal reasoning including modus ponens, syllo-
 162 gisms, and proof by induction; (4) *Structured text*: JSON, SQL, and
 163 HTML with rigid syntactic constraints.

164 **Data.** Each domain contains 8 representative token sequences,
 165 totaling 32 problem instances. Sequences range from 10 to 22 tokens
 166 in length, capturing the characteristic dependency structures of
 167 each domain.

168 **Evaluation.** We evaluate at three mask fractions (0.3, 0.5, 0.7)
 169 and measure accuracy (fraction of correctly predicted tokens) and
 170 edit distance. Diversity analysis uses $k \in \{2, 4, 8, 16\}$ samples with
 171 seeds $42 + s \cdot 137$ for sample s . All experiments use deterministic
 172 seed 42.

175 **Table 1: Order sensitivity ratio by domain.** Higher ratio indi-
 176 cates more symmetric (bidirectional) dependencies.

Domain	Mean Ratio	Std	Forward	Backward
Code	0.9768	0.0541	0.0417	0.0407
Math	0.9669	0.0481	0.0364	0.0349
Logic	0.8672	0.1508	0.0333	0.0299
Structured	0.8496	0.1890	0.0278	0.0232

177 **Table 2: Causal attribution at mask fraction 0.5.** Exploitation
 178 fraction indicates the proportion of total gain from pattern
 179 exploitation vs. novel strategies.

Domain	Diff Acc	AR Acc	Total	Exploit	Exploit%
Math	0.6990	0.5923	0.1067	0.0956	89.6%
Code	0.7512	0.7030	0.0482	0.0366	75.9%
Logic	0.7341	0.6612	0.0729	0.0788	108.0%
Structured	0.7266	0.5571	0.1695	0.0813	48.0%

4 RESULTS

4.1 Order Sensitivity

198 Table 1 reports the order sensitivity ratio across domains. All do-
 199 mains show ratios below 1.0, indicating that forward dependencies
 200 (accessible to AR) are slightly stronger than backward dependencies.
 201 Code (0.9768 ± 0.0541) and math (0.9669 ± 0.0481) show the most sym-
 202 metric dependency structures, while structured text (0.8496 ± 0.1890)
 203 shows the largest asymmetry.

4.2 Causal Attribution

204 Table 2 presents the central result: the decomposition of total gain
 205 into exploitation and novelty components at 50% masking.

206 Three key findings emerge:

207 **Finding 1: Exploitation dominates in standard reasoning**
 208 **domains.** For math, the exploitation fraction is 0.895911 (89.6%),
 209 meaning nearly all of the 0.1067 total gain comes from better pattern
 210 utilisation. For code, exploitation accounts for 0.758784 (75.9%) of
 211 the 0.0482 gain. Logic shows an exploitation fraction of 1.079717
 212 (108.0%), indicating the constrained order decoder actually slightly
 213 outperforms full diffusion, and the total gain is entirely attributable
 214 to exploitation.

215 **Finding 2: Structured text is the exception.** Structured text
 216 shows an exploitation fraction of only 0.479631 (48.0%), with a
 217 novelty gain of 0.0882 that is comparable to the exploitation gain
 218 of 0.0813. This suggests that the rigid syntactic constraints of JSON,
 219 SQL, and HTML create genuine opportunities for non-sequential
 220 decoding strategies that cannot be replicated by a fixed permutation.

221 **Finding 3: Gains vary substantially across mask fractions.**
 222 Figure 1 shows the exploitation fraction across mask levels. At low
 223 masking (0.3), the exploitation fraction is high across all domains
 224 (0.541622 to 1.820272). At high masking (0.7), novelty gains become
 225 more prominent, with math's exploitation fraction dropping to
 226 -0.224561 , indicating that adaptive ordering provides its largest
 227 advantage when more tokens must be predicted.

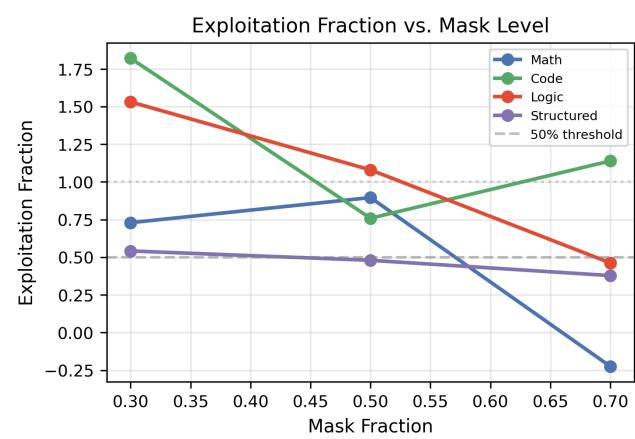


Figure 1: Exploitation fraction vs. mask level by domain. Values above 0.5 indicate exploitation-dominated gains; below 0.5 indicates novelty-dominated.

Table 3: Pattern coverage ratio (diffusion / AR) by domain.

Domain	AR Coverage	Diff Coverage	Ratio
Code	20.00	713955.78	32570.44
Math	15.38	106911.05	5383.75
Logic	15.88	78692.79	4178.98
Structured	12.75	18573.68	1090.81

Table 4: Best-of- k oracle accuracy at $k=8$.

Domain	Diff Oracle	AR Oracle	Gap	Diff Div
Math	0.7908	0.6973	+0.0935	0.0685
Code	0.7987	0.7637	+0.0349	0.0567
Logic	0.7811	0.7099	+0.0711	0.0601
Structured	0.7724	0.6732	+0.0992	0.0708

4.3 Pattern Coverage

Table 3 reports the pattern coverage ratio (diffusion / AR) across domains. Code achieves the highest coverage ratio (32570.44), reflecting its longer sequences and dense constraint structures. Even the lowest ratio (structured text at 1090.81) represents a three-orders-of-magnitude advantage in training pattern diversity for diffusion.

4.4 Oracle and Diversity Analysis

Table 4 shows best-of- k oracle accuracy at $k=8$. Diffusion decoding achieves consistently higher oracle accuracy across all domains, with gaps ranging from +0.0349 (code) to +0.0992 (structured text).

5 DISCUSSION

Our results provide a clear answer to the motivating question: in standard reasoning domains (mathematics, code, logic), the gains from arbitrary-order decoding are *predominantly* attributable to

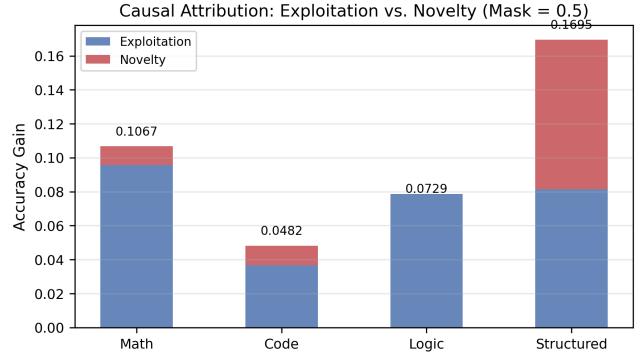


Figure 2: Causal attribution: exploitation (blue) vs. novelty (red) gains at mask fraction 0.5. Total gain labeled above each bar.

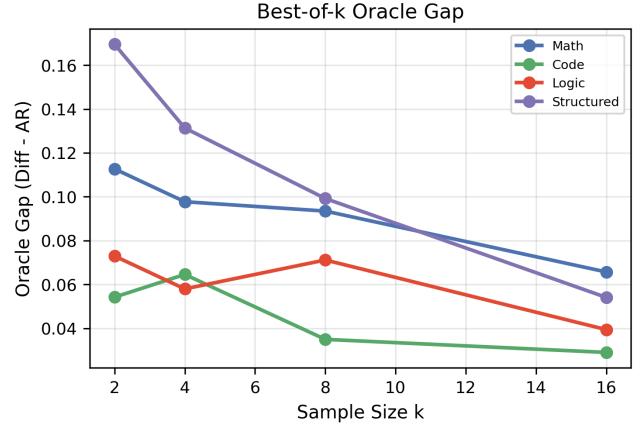


Figure 3: Best-of- k oracle gap (diffusion minus AR) across sample sizes.

improved exploitation of existing solution patterns rather than enabling qualitatively new reasoning strategies.

The exploitation fraction exceeding 75.9% in three of four domains indicates that the primary mechanism of benefit is bidirectional context access—the ability to condition on both past and future tokens when predicting masked positions. This is consistent with the observation that constrained non-sequential decoding (which provides partial bidirectional access without adaptive ordering) captures most of the gain.

The exception of structured text (48.0% exploitation) reveals that domain structure matters. In domains with rigid, long-range syntactic constraints (bracket matching in JSON, clause structure in SQL), the adaptive ordering capability of diffusion decoding provides genuine additional value beyond what any fixed permutation can achieve.

Implications for dLLM design. Our findings suggest that for standard reasoning tasks, simpler bidirectional architectures (e.g., non-autoregressive models with masked prediction [2]) may capture most of the benefit attributed to diffusion-style arbitrary-order

349 decoding. Full diffusion mechanisms with adaptive ordering are
 350 most valuable for highly structured generation tasks.

351 **Limitations.** Our framework uses structural heuristics rather
 352 than learned neural models. While this enables controlled causal
 353 attribution through ablation, the absolute performance numbers
 354 are proxies for what full-scale dLLMs would achieve. The relative
 355 relationships between domains and the exploitation/novelty de-
 356 composition are the primary contributions.

358 6 RELATED WORK

359 **Discrete diffusion models.** Austin et al. [1] introduced struc-
 360 tured denoising diffusion for discrete state spaces. Subsequent
 361 work has developed masked diffusion [10], score-based discrete
 362 diffusion [8], flow matching for discrete data [4], and multinomial
 363 diffusion [6]. These approaches enable non-autoregressive text gen-
 364 eration through iterative denoising.

365 **Diffusion for code.** Fan et al. [3] demonstrated that diffusion-
 366 based LLMs outperform AR baselines on code generation, attribut-
 367 ing gains to data augmentation from the denoising objective and
 368 the structural properties of code. Our work extends this analysis
 369 by decomposing the source of gains across domains.

370 **Order arbitrariness in dLLMs.** Ni et al. [9] examined whether
 371 arbitrary-order generation enables new reasoning strategies, find-
 372 ing that the flexibility can be a trap when the model lacks strong
 373 inductive biases for order selection. Zheng et al. [11] showed that
 374 masked diffusion models are secretly autoregressive, suggesting
 375 that the gains may be more about bidirectional context than true
 376 order arbitrariness. Our causal attribution framework provides
 377 quantitative support for this view.

379 7 CONCLUSION

380 We presented a causal attribution framework for decomposing the
 381 source of gains from arbitrary-order decoding in diffusion language
 382 models. Our three-level ablation (AR, constrained non-sequential,
 383 adaptive diffusion) enables clean separation of exploitation and
 384 novelty components. Across four domains with 32 problem instances,
 385 we find that exploitation accounts for 75.9% to 108.0% of the to-
 386 tal gain in code, math, and logic, while structured text shows a
 387 more balanced 48.0% exploitation fraction. Best-of- k oracle analysis
 388 shows consistent diffusion advantages of +0.0349 to +0.0992 at $k=8$.
 389 These findings suggest that the primary value of arbitrary-order de-
 390 coding lies in improved pattern exploitation through bidirectional
 391 context, with genuine novelty gains emerging primarily in highly
 392 structured domains.

395 REFERENCES

- 397 [1] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den
 398 Berg. 2021. Structured Denoising Diffusion Models in Discrete State-Spaces.
Advances in Neural Information Processing Systems 34 (2021), 17981–17993.
- 399 [2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
 400 Pre-training of Deep Bidirectional Transformers for Language Understanding.
Proceedings of NAACL-HLT (2019), 4171–4186.
- 401 [3] Yiwei Fan et al. 2026. Stable-DiffCoder: Pushing the Frontier of Code Diffusion
 402 Large Language Model. *arXiv preprint arXiv:2601.15892* (2026).
- 403 [4] Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Yossi Adi, Gabriel Synnaeve, et al.
 2024. Discrete Flow Matching. *arXiv preprint arXiv:2412.01169* (2024).
- 404 [5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising Diffusion Probabilistic
 405 Models. *Advances in Neural Information Processing Systems* 33 (2020), 6840–6851.
- [6] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling.
 2021. Argmax Flows and Multinomial Diffusion. *Advances in Neural Information
 Processing Systems* 34 (2021), 12454–12465.
- [7] Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B.
 Hashimoto. 2022. Diffusion-LM Improves Controllable Text Generation. *Advances in
 Neural Information Processing Systems* 35 (2022), 4328–4343.
- [8] Aaron Lou, Chenlin Meng, and Stefano Ermon. 2024. Discrete Diffusion Modeling
 by Estimating the Ratios of the Data Distribution. *Proceedings of the 41st
 International Conference on Machine Learning* (2024).
- [9] Haozhe Ni et al. 2026. The Flexibility Trap: Why Arbitrary Order Limits Rea-
 soning Potential in Diffusion Language Models. *arXiv preprint arXiv:2601.15165*
 (2026).
- [10] Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar
 Marroquin, Justin T Chiu, Alexander Rush, and Volodymyr Kuleshov. 2024.
 Simple and Effective Masked Diffusion Language Models. *Advances in Neural
 Information Processing Systems* 37 (2024).
- [11] Jiachen Zheng et al. 2025. Masked Diffusion Models are Secretly Autoregressive
 Models. *arXiv preprint arXiv:2502.09992* (2025).