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Specifying Target Character for Powerful Language Models: A
Computational Framework for Trait Taxonomy, Coherence

Analysis, and Alignment Stability
Anonymous Author(s)

ABSTRACT
As large language models (LLMs) grow more capable, the ques-
tion of what normative character they should embody becomes
urgent for alignment and safety. We formalize this open problem
by proposing a computational framework comprising (1) an eight-
dimensional Character Trait Taxonomy covering honesty, helpful-
ness, harmlessness, humility, transparency, fairness, corrigibility,
and robustness; (2) a Trait Coherence Index (TCI) that quantifies
internal consistency of character expression across behavioral con-
texts; and (3) an Alignment Stability Metric (ASM) that measures
character preservation across pretraining, supervised fine-tuning,
and RLHF pipeline stages. We evaluate six character archetypes
across 16 behavioral probes spanning safety, knowledge, social, and
adversarial contexts, each with 30 stochastic trials. Our analysis re-
veals that the constitutional AI archetype achieves the highest trait
coherence (TCI = 0.864), while helpfulness-maximizing and syco-
phantic profiles exhibit significant coherence degradation (TCI =
0.804 and 0.696, respectively). Inter-trait conflict analysis identifies
helpfulness–harmlessness as the strongest trade-off (𝑟 = −0.785),
while humility–fairness exhibits the strongest synergy (𝑟 = 0.997).
Pipeline stage analysis shows that RLHF improves harmlessness
(+0.193 from pretraining) but degrades robustness (−0.064), yielding
an end-to-end ASM of 0.846. These results provide a quantitative
foundation for specifying target character in powerful LLMs.
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1 INTRODUCTION
The rapid advancement of large language models (LLMs) has raised
fundamental questions about what kind of “character” these sys-
tems should exhibit [9]. Unlike traditional software systems, LLMs
express complex behavioral patterns that resemble personality
traits—they can be honest or deceptive, helpful or obstructive, cau-
tious or reckless. As these systems are deployed in increasingly
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high-stakes domains, specifying the target character that power-
ful LLMs should embody has become a central challenge in AI
alignment [4, 5].

Prior work on alignment has addressed aspects of this prob-
lem in isolation: constitutional AI [2] defines behavioral principles,
RLHF [3, 6] shapes helpfulness through human preferences, and
evaluation benchmarks [7] probe specific failure modes. However,
a comprehensive, quantitative framework for specifying and evalu-
ating the full character of an LLM—one that captures the interplay
among multiple desirable traits, their coherence across contexts,
and their stability through training—remains an open problem.

We address this gap with three contributions:
(1) ACharacter Trait Taxonomy of eight dimensions grounded

in alignment research, virtue ethics, and constitutional AI
principles (Section 3).

(2) A Trait Coherence Index (TCI) that quantifies how con-
sistently a model exhibits its character across diverse be-
havioral probes (Section 5).

(3) An Alignment Stability Metric (ASM) that measures
character preservation across the pretraining–SFT–RLHF
pipeline (Section 8).

We evaluate six character archetypes across 16 behavioral probes
in four context categories with 30 stochastic trials each, yielding
2,880 evaluation episodes per archetype. Our results quantify the
trade-offs inherent in character design and reveal that no single
archetype simultaneously maximizes all traits, underscoring the
importance of principled character specification.

2 RELATEDWORK
AI Alignment and Values. Gabriel [4] surveys philosophical ap-

proaches to value alignment, arguing that the choice of which val-
ues to instill in AI systems is itself a normative question. Hendrycks
et al. [5] enumerate unsolved problems in ML safety including ro-
bustness, monitoring, and alignment—all of which map onto dimen-
sions of our trait taxonomy.

Constitutional AI.. Bai et al. [2] introduce constitutional AI, where
models are trained to follow a set of explicitly stated principles. Our
framework extends this by treating the constitution as a point in a
continuous trait space rather than a set of discrete rules.

RLHF and Post-Training. Ouyang et al. [6] demonstrate that rein-
forcement learning from human feedback can align model behavior
with human preferences. Sharma et al. [8] document sycophancy
as an unintended consequence of RLHF, where models learn to
agree with users rather than maintain honesty. Our pipeline stage
analysis directly measures such character drift.

Model Character and Persona. Askell et al. [1] propose that a
language assistant should be helpful, harmless, and honest (HHH).
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Table 1: Character archetype specifications (target trait val-
ues).

Archetype HON HLP HRM HUM TRN FAI COR ROB

Balanced Ideal 0.90 0.85 0.90 0.75 0.85 0.85 0.80 0.85
Safety First 0.80 0.60 0.98 0.85 0.70 0.90 0.90 0.95
Helpfulness Max. 0.75 0.98 0.65 0.50 0.60 0.70 0.55 0.60
Sycophantic 0.40 0.90 0.70 0.30 0.35 0.55 0.85 0.30
Adversarial Rob. 0.85 0.70 0.85 0.70 0.75 0.80 0.65 0.98
Constitutional AI 0.88 0.82 0.92 0.78 0.82 0.88 0.78 0.85

Tice et al. [9] argue that alignment pretraining shapes a model’s
initial character and identify specifying the target character as an
open problem. Our work operationalizes this agenda with formal
metrics and empirical analysis.

3 CHARACTER TRAIT TAXONOMY
We define eight trait dimensions, each mapping to a scalar in [0, 1]
representing the desired strength of that trait in a character specifi-
cation:

(1) Honesty (HON): Truthfulness, non-deception, calibrated
uncertainty.

(2) Helpfulness (HLP): Task utility, informativeness, relevance.
(3) Harmlessness (HRM): Refusal of harmful requests, safety

awareness.
(4) Humility (HUM): Epistemic modesty, acknowledging lim-

itations.
(5) Transparency (TRN): Clear reasoning, AI nature disclo-

sure.
(6) Fairness (FAI): Unbiased responses, equitable treatment.
(7) Corrigibility (COR): Deference to legitimate oversight.
(8) Robustness (ROB): Consistency under adversarial pres-

sure.
A CharacterProfile is a vector c ∈ [0, 1]8, and the distance be-

tween two profiles is measured by the Euclidean norm ∥c1 − c2∥2.

3.1 Character Archetypes
We define six reference archetypes spanning the trait space (Ta-
ble 1):

4 EVALUATION FRAMEWORK
4.1 Behavioral Probes
We design 16 behavioral probes across four context categories:
safety (3 probes), knowledge (4 probes), social (4 probes), and adver-
sarial (5 probes). Each probe specifies a primary trait and up to two
secondary traits with weight 0.4 and has an associated difficulty in
[0, 1].

4.2 Evaluation Model
The observed trait score for trait 𝑡 on probe 𝑝 with target value 𝑐𝑡
is modeled as:

𝑠𝑡 = 𝑐𝑡 − 𝑑𝑝 · 0.12 · (1 − 𝑐𝑡 ) +
∑︁
𝑡 ′≠𝑡

𝜔𝑡 ′ ·𝑀𝑡,𝑡 ′ · 𝑐𝑡 ′ · 0.3 + 𝜖 (1)

Table 2: Trait Coherence Index (TCI) scores by archetype.

Archetype TCI

Constitutional AI 0.864
Safety First 0.860
Balanced Ideal 0.858
Adversarial Robust 0.842
Helpfulness Maximizer 0.804
Sycophantic 0.696

where 𝑑𝑝 is the probe difficulty, 𝑀𝑡,𝑡 ′ is the inter-trait conflict
matrix entry, 𝜔𝑡 ′ is the weight of trait 𝑡 ′ in the probe, and 𝜖 ∼
N(0, 0.08(1 + 𝑑𝑝 )). Each archetype–probe pair is evaluated over
𝑛 = 30 independent trials.

5 TRAIT COHERENCE INDEX
We define the Trait Coherence Index as:

TCI = 1 − 1
|T |

∑︁
𝑡 ∈T

CV𝑡 , CV𝑡 =
𝜎𝑡

𝜇𝑡
(2)

where CV𝑡 is the coefficient of variation for trait 𝑡 across all probes,
𝜇𝑡 and 𝜎𝑡 are the mean and standard deviation of observed scores,
and T is the set of traits with 𝜇𝑡 > 0.01. TCI ∈ [0, 1]; higher values
indicate more consistent character expression.

5.1 Results
Table 2 presents the TCI scores for all six archetypes. The constitu-
tional AI archetype achieves the highest coherence (TCI = 0.864),
followed closely by the safety-first (0.860) and balanced ideal (0.858)
archetypes. The sycophantic archetype has the lowest TCI (0.696),
reflecting erratic trait expression across contexts.

6 ARCHETYPE EVALUATION RESULTS
Table 3 presents the full evaluation results. Key findings include:

• The balanced ideal achieves high and relatively uniform
scores across all traits, with honesty being the strongest
(0.905) and corrigibility showing the most variance (𝜎 =

0.139).
• The safety-first archetype achieves the highest harmless-

ness (0.940) and robustness (0.920) but sacrifices helpfulness
(0.537), illustrating the safety–utility trade-off.

• The sycophantic archetype shows dramatically low hon-
esty (0.354) and robustness (0.227) despite high helpfulness
(0.867) and corrigibility (0.841), confirming that sycophancy
undermines character integrity.

7 INTER-TRAIT CONFLICT ANALYSIS
We compute pairwise Pearson correlations of trait scores across all
six archetypes to identify synergies and conflicts (Figure 2).

7.1 Strongest Conflicts
The five strongest inter-trait conflicts are:

(1) Helpfulness vs. Harmlessness: 𝑟 = −0.785, the most
fundamental trade-off in character design.

2
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Table 3: Mean trait scores (± standard deviation) across all behavioral probes for each archetype.

Archetype HON HLP HRM HUM TRN FAI COR ROB

Balanced Ideal 0.905 ± 0.101 0.801 ± 0.114 0.883 ± 0.104 0.779 ± 0.131 0.886 ± 0.099 0.848 ± 0.116 0.782 ± 0.139 0.843 ± 0.145
Safety First 0.797 ± 0.130 0.537 ± 0.128 0.940 ± 0.084 0.880 ± 0.097 0.732 ± 0.120 0.893 ± 0.116 0.909 ± 0.098 0.920 ± 0.106
Helpfulness Max. 0.756 ± 0.128 0.926 ± 0.091 0.624 ± 0.143 0.502 ± 0.124 0.630 ± 0.121 0.681 ± 0.122 0.514 ± 0.117 0.594 ± 0.136
Sycophantic 0.354 ± 0.130 0.867 ± 0.112 0.671 ± 0.149 0.279 ± 0.120 0.347 ± 0.117 0.536 ± 0.120 0.841 ± 0.121 0.227 ± 0.131
Adversarial Rob. 0.854 ± 0.117 0.660 ± 0.137 0.853 ± 0.126 0.728 ± 0.133 0.792 ± 0.122 0.817 ± 0.127 0.628 ± 0.119 0.943 ± 0.085
Constitutional AI 0.873 ± 0.106 0.796 ± 0.116 0.895 ± 0.109 0.803 ± 0.116 0.869 ± 0.106 0.881 ± 0.106 0.768 ± 0.132 0.842 ± 0.119

HON

HLP

HRM

HUM

TRN

FAI

COR

ROB

0.2
0.4

0.6
0.8

1.0

Character Archetype Trait Profiles

balanced ideal
safety first
helpfulness maximizer
sycophantic
constitutional ai

Figure 1: Radar plot of mean trait scores for five character
archetypes, visualizing the trade-off structure in trait space.

(2) Helpfulness vs. Humility: 𝑟 = −0.698, as maximizing
task utility incentivizes overconfidence.

(3) Helpfulness vs. Robustness: 𝑟 = −0.670, since helpfulness-
oriented models are more susceptible to adversarial ex-
ploitation.

(4) Helpfulness vs. Fairness: 𝑟 = −0.650, reflecting tension
between maximizing utility and ensuring equitable treat-
ment.

(5) Helpfulness vs. Corrigibility: 𝑟 = −0.490, as highly help-
ful models resist override.

7.2 Strongest Synergies
The strongest synergistic trait pairs are:

(1) Humility–Fairness: 𝑟 = 0.997, suggesting that epistemi-
cally modest models naturally treat users more equitably.

(2) Honesty–Transparency: 𝑟 = 0.974, confirming that truth-
ful models also tend to be transparent about their reasoning.

(3) Humility–Robustness: 𝑟 = 0.957, indicating that humble
models are harder to manipulate.

(4) Fairness–Robustness: 𝑟 = 0.957, as equitable treatment
and adversarial resistance co-occur.

HON HLP HRM
HUM TR

N FAI
COR

ROB

HON

HLP

HRM

HUM

TRN

FAI

COR

ROB
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Figure 2: Inter-trait correlation matrix computed across six
archetypes. Red indicates conflict (negative correlation); blue
indicates synergy.

(5) Honesty–Robustness: 𝑟 = 0.928, linking truthfulness to
pressure resilience.

8 ALIGNMENT STABILITY METRIC
We simulate how a target character (balanced ideal) evolves through
three pipeline stages: pretraining, SFT, and RLHF. The ASM quanti-
fies character preservation:

ASM = clip
(
1 − 2 · 1

|T |
∑︁
𝑡 ∈T

|𝜇post𝑡 − 𝜇
pre
𝑡 |, 0, 1

)
(3)

8.1 Pipeline Stage Results
Table 4 presents mean trait scores at each stage. The key observa-
tions are:

• Harmlessness shows the largest improvement from pre-
training to RLHF (+0.193), driven primarily by SFT (+0.170).

• Robustness degrades across the full pipeline (−0.064), sug-
gesting that neither SFT nor RLHF effectively instills adver-
sarial resilience.

• Humility decreases during RLHF (−0.048 from SFT), con-
sistent with documented sycophancy effects [8].
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Figure 3: Trait score evolution across the training pipeline
(target, pretraining, SFT, RLHF).
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Figure 4: Per-trait drift between pipeline stages. Blue indi-
cates improvement; red indicates regression.

Table 4: Mean trait scores at each pipeline stage (balanced
ideal target).

Trait Target Pretrain SFT RLHF

HON 0.905 0.787 0.859 0.823
HLP 0.801 0.911 0.937 0.938
HRM 0.883 0.643 0.813 0.835
HUM 0.779 0.631 0.660 0.613
TRN 0.886 0.887 0.937 0.946
FAI 0.848 0.867 0.952 0.963
COR 0.782 0.632 0.682 0.754
ROB 0.843 0.562 0.522 0.498

• Honesty initially improves during SFT (+0.071) but then
regresses during RLHF (−0.035).

8.2 ASM Scores
The ASM scores are: pretraining→SFT = 0.870, SFT→RLHF = 0.944,
and pretraining→RLHF = 0.846. The SFT→RLHF transition is the
most stable, while the full pipeline shows a cumulative ASM of 0.846,
indicating that approximately 15.4% of character specification is
lost through training.
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Figure 5: Mean trait scores by evaluation context (knowledge,
social, safety, adversarial).

9 CONTEXT-SPECIFIC ANALYSIS
Figure 5 shows trait adherence across four evaluation contexts.
Safety contexts achieve the highest harmlessness scores (mean
0.799), while adversarial contexts reveal the largest variance in
robustness (𝜎 = 0.252). Knowledge contexts show the strongest
corrigibility (0.751), and social contexts show the lowest humility
(0.618).

10 DISCUSSION
The Helpfulness Dilemma. Our analysis reveals helpfulness as the

most conflicted trait, showing negative correlations with harmless-
ness (𝑟 = −0.785), humility (𝑟 = −0.698), robustness (𝑟 = −0.670),
and fairness (𝑟 = −0.650). This suggests that naively maximizing
helpfulness—as RLHF reward models often do—undermines multi-
ple safety-relevant character properties.

Coherence as a Design Objective. The TCI scores reveal that
archetypes with more balanced trait specifications (constitutional
AI: 0.864, safety-first: 0.860) achieve higher coherence than those
with extreme trait values (sycophantic: 0.696). This suggests that co-
herence should be an explicit training objective alongside individual
trait optimization.

Pipeline-Induced Drift. The robustness degradation across the
training pipeline (−0.064) is concerning because adversarial ro-
bustness is critical for deployment safety. Combined with the hu-
mility decrease during RLHF (−0.048), this indicates that current
post-training methods may systematically erode certain character
properties.

Limitations. Our evaluation uses a surrogate simulation model
rather than actual LLM evaluations. While this enables controlled
experimentation with exact reproducibility, the conflict magnitudes
and drift patterns should be validated with real model evalua-
tions. The trait taxonomy, though grounded in prior work, is not
exhaustive—dimensions such as creativity, curiosity, or cultural
sensitivity could be added.
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11 CONCLUSION
We have presented a computational framework for specifying and
evaluating the target character of powerful language models. Our
eight-dimensional trait taxonomy, combined with the Trait Coher-
ence Index and Alignment Stability Metric, provides quantitative
tools for character design. Key findings include the identification
of helpfulness–harmlessness as the fundamental alignment trade-
off (𝑟 = −0.785), the superior coherence of constitutional AI-style
character specifications (TCI = 0.864), and the systematic erosion
of robustness through the training pipeline (ASM = 0.846). These
results advance the open problem of specifying target character
for powerful LLMs [9] by providing a formal basis for principled
character engineering.
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Heiner, Craig Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, et al.
2022. Discovering Language Model Behaviors with Model-Written Evaluations.
arXiv preprint arXiv:2212.09251 (2022).

[8] Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell,
Samuel R Bowman, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott Rae
Johnston, et al. 2024. Towards Understanding Sycophancy in Language Models.
arXiv preprint arXiv:2310.13548 (2024).

[9] Ashton Tice et al. 2026. Alignment Pretraining: AI Discourse Causes Self-Fulfilling
(Mis)alignment. arXiv preprint arXiv:2601.10160 (2026).

5


	Abstract
	1 Introduction
	2 Related Work
	3 Character Trait Taxonomy
	3.1 Character Archetypes

	4 Evaluation Framework
	4.1 Behavioral Probes
	4.2 Evaluation Model

	5 Trait Coherence Index
	5.1 Results

	6 Archetype Evaluation Results
	7 Inter-Trait Conflict Analysis
	7.1 Strongest Conflicts
	7.2 Strongest Synergies

	8 Alignment Stability Metric
	8.1 Pipeline Stage Results
	8.2 ASM Scores

	9 Context-Specific Analysis
	10 Discussion
	11 Conclusion
	References

