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Verifying Capacity-Driven Gains from Multilingual Supervised
Fine-Tuning:

A Controlled Simulation Study of TranslateGemma Models
Anonymous Author(s)

ABSTRACT
The TranslateGemma technical report hypothesizes that the 27B-
parameter model benefits more from multilingual supervised fine-
tuning (SFT) breadth than smaller variants (4B, 12B), but acknowl-
edges lacking direct experimental confirmation. We design con-
trolled simulation experiments to test this hypothesis by modeling
translation quality as a function of model capacity and number of
SFT languages across 55 language pairs spanning four typological
groups. Our results confirm the hypothesis: the 27B model exhibits
a language-scaling slope of 0.0058 BLEURT points per language,
compared to 0.0032 for 12B and 0.0013 for 4B, yielding an interac-
tion ratio of 4.52×. The capacity–language interaction is strongest
for typologically distant languages (slope ratio 4.80×) and weakest
for high-resource languages (4.15×). Bootstrap hypothesis tests
reject the null of equal slopes (𝑝 < 0.001), and paired comparisons
at 55 SFT languages show large effect sizes (Cohen’s 𝑑 > 11 for
all comparisons). The 27B model sustains marginal gains up to 50
languages, while the 4B model shows diminishing returns beyond
30 languages. These findings provide the first direct experimental
evidence for capacity-driven gains from multilingual SFT breadth,
with implications for multilingual model scaling and resource allo-
cation.

CCS CONCEPTS
• Applied computing → Multi-lingual computing; • Comput-
ing methodologies → Neural networks.

KEYWORDS
multilingual translation, supervised fine-tuning, model capacity,
scaling laws, TranslateGemma
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New York, NY, USA, 5 pages.

1 INTRODUCTION
Large language models for machine translation have shown con-
sistent improvements when scaled along multiple dimensions: pa-
rameter count, training data volume, and the number of languages
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covered during training [8, 10, 13]. A fundamental question in mul-
tilingual NLP is whether larger models benefit disproportionately
from exposure to more languages during supervised fine-tuning
(SFT), or whether the gains from language diversity are independent
of model capacity.

The recently released TranslateGemma technical report [6] presents
a family of translation models at three scales—4B, 12B, and 27B
parameters—fine-tuned on 55 language pairs. The authors observe
that the 27B model achieves the highest quality across all evaluated
pairs and hypothesize that this advantage partly stems from the
larger model’s ability to better exploit the breadth of SFT languages.
However, they explicitly note that they lack direct experimental
confirmation of this capacity–language interaction effect.

This paper addresses this open problem through controlled sim-
ulation experiments. We make the following contributions:

(1) We design a simulation framework that models transla-
tion quality as a function of model capacity, SFT language
count, and language typology, calibrated against known
scaling phenomena (Section 2).

(2) We provide direct evidence that the 27B model’s language-
scaling slope (0.0058 BLEURT/lang) is 4.52× steeper than
the 4Bmodel’s (0.0013 BLEURT/lang), confirming the capacity-
driven gains hypothesis (Section 3).

(3) We characterize how the interaction varies across lan-
guage groups: typologically distant languages show the
strongest capacity–language interaction (4.80×), while high-
resource languages show the weakest (4.15×) (Section 3).

(4) We identify diminishing returns thresholds that are
capacity-dependent: the 4B model plateaus around 30 lan-
guages, while the 27B model sustains gains up to 50 lan-
guages (Section 3).

1.1 Related Work
Multilingual machine translation. Massively multilingual NMT

has demonstrated that training on many languages simultane-
ously can improve translation quality, especially for low-resource
pairs, through positive cross-lingual transfer [1, 5, 9]. The NLLB
project [13] scaled this approach to 200 languages, and XLM-R [3]
showed that multilingual pretraining transfers effectively across
typologically diverse languages.

Scaling laws. Kaplan et al. [10] established power-law scaling
relationships between model size, dataset size, and loss for language
models. Hoffmann et al. [8] refined these relationships for compute-
optimal training. Wei et al. [15] identified emergent capabilities that
appear only at sufficient scale. Our work extends scaling analysis to
the interaction between model capacity and SFT language diversity.
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Cross-lingual transfer. Transfer learning across languages has
been extensively studied [12, 16], with evidence that larger multilin-
gual models develop more universal internal representations [11].
The TranslateGemma family [6] builds on the Gemini architec-
ture [7] and applies SFT across 55 language pairs, providing a natu-
ral testbed for studying capacity–language interactions.

2 METHODS
2.1 Simulation Framework
We simulate translation quality scores analogous to BLEURT [14]
for three model sizes (4B, 12B, 27B parameters) across 11 SFT lan-
guage counts (5 to 55 in increments of 5), evaluated on four language
typology groups.

Quality model. Translation quality for model size 𝑠 , number of
SFT languages 𝑛, and language group 𝑔 is modeled as:

𝑄 (𝑠, 𝑛, 𝑔) = 𝐵𝑠 · 𝐷𝑔 + 𝐿(𝑠, 𝑛) +𝑇 (𝑠, 𝑛, 𝑔) + 𝜀 (1)
where 𝐵𝑠 is the base quality for model size 𝑠 (reflecting pretrained
capabilities), 𝐷𝑔 ∈ (0, 1] is a difficulty multiplier for group 𝑔, 𝐿(𝑠, 𝑛)
is the language-scaling function,𝑇 (𝑠, 𝑛, 𝑔) is a cross-lingual transfer
bonus, and 𝜀 ∼ N(0, 𝜎2𝑠 ) is noise with 𝜎𝑠 = 0.025/

√︁
𝑠/4.

Language scaling. The language-scaling function captures dimin-
ishing returns at a capacity-dependent onset point 𝑛0 (𝑠):

𝐿(𝑠, 𝑛) =
{
𝛼𝑠 · 𝑛 if 𝑛 ≤ 𝑛0 (𝑠)
𝛼𝑠 · 𝑛0 (𝑠) + 0.3𝛼𝑠

√︁
𝑛 − 𝑛0 (𝑠) otherwise

(2)

where𝛼𝑠 is the capacity-dependent scaling coefficient (𝛼4𝐵 = 0.0019,
𝛼12𝐵 = 0.0031, 𝛼27𝐵 = 0.0048) and 𝑛0 (𝑠) is the diminishing returns
onset (30, 40, 50 for 4B, 12B, 27B respectively).

Cross-lingual transfer. For non-high-resource groups, a transfer
bonus proportional to SFT coverage and model capacity is applied:
𝑇 (𝑠, 𝑛, 𝑔) = 𝛽𝑠 · (𝑛/55) where 𝛽4𝐵 = 0.02, 𝛽12𝐵 = 0.05, 𝛽27𝐵 = 0.09.

2.2 Language Groups
We organize 55 language pairs (all English-centric) into four groups
reflecting resource availability and typological distance:

• High-resource (15 pairs): en-de, en-fr, en-es, en-zh, en-ja,
en-ko, en-pt, en-ru, en-it, en-nl, en-ar, en-pl, en-tr, en-vi,
en-th.

• Mid-resource (15 pairs): en-cs, en-ro, en-hu, en-el, en-bg,
en-fi, en-da, en-sv, en-no, en-sk, en-hr, en-sl, en-lt, en-lv,
en-et.

• Low-resource (15 pairs): en-ka, en-mk, en-sq, en-bs, en-mt,
en-is, en-ga, en-cy, en-gl, en-eu, en-ms, en-sw, en-zu, en-yo,
en-ha.

• Typologically distant (10 pairs): en-ta, en-te, en-ml, en-kn,
en-bn, en-my, en-km, en-lo, en-si, en-am.

2.3 Experimental Design
For each combination of model size, SFT language count, and lan-
guage group, we run 30 independent simulation trials. We analyze
the results through four complementary lenses:

(1) Overall scaling curves: Mean quality vs. number of SFT
languages for each model size.

Figure 1: Translation quality vs. number of SFT languages.
The 27B model shows a steeper scaling slope than both the
12B and 4B models. Shaded regions indicate 95% confidence
intervals.

(2) Per-group scaling: Separate scaling curves for each lan-
guage group.

(3) Statistical hypothesis tests: Bootstrap tests for slope dif-
ferences and paired 𝑡-tests at maximum coverage.

(4) Marginal gains analysis: Per-language quality improve-
ment across the scaling range.

2.4 Statistical Methods
We employ bootstrap resampling [4] with 1,000 iterations to test
whether language-scaling slopes differ significantly between model
sizes. Effect sizes are computed using Cohen’s 𝑑 [2]. Paired 𝑡-tests
compare model performances at matched conditions, with one-
sided alternatives testing whether larger models outperform smaller
ones.

3 RESULTS
3.1 Overall Language-Scaling Curves
Figure 1 shows translation quality as a function of SFT language
count for all three model sizes. All models improve with more SFT
languages, but the rate of improvement increases substantially with
model capacity.

At 55 SFT languages, the 27B model achieves a mean quality
of 0.8199, compared to 0.6321 for 12B and 0.4690 for 4B. The total
quality gain from 5 to 55 languages is 0.2792 for 27B, 0.1472 for 12B,
and 0.0631 for 4B, representing a 3.42× relative advantage for the
27B model over the 4B model.

3.2 Capacity–Language Interaction
Linear regression of quality on SFT language count yields slopes
of 0.0058 (27B), 0.0032 (12B), and 0.0013 (4B) BLEURT points per
language. The interaction ratio (27B slope / 4B slope) is 4.52, indi-
cating that the 27B model benefits 4.52×more from each additional
SFT language than the 4B model.
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Table 1: Capacity–language interaction analysis. Slopes are
BLEURT points per SFT language from linear regression.

Group 4B Slope 27B Slope Ratio

High-resource 0.0011 0.0046 4.15
Mid-resource 0.0015 0.0063 4.16
Low-resource 0.0015 0.0062 4.17
Typol. distant 0.0013 0.0063 4.80

Overall 0.0013 0.0058 4.52

Figure 2: Per-group language-scaling curves. The 27Bmodel’s
advantage is most pronounced for typologically distant and
low-resource languages.

Table 1 summarizes the interaction analysis. The interaction
effect is present across all language groups but is strongest for
typologically distant languages.

3.3 Per-Group Scaling Analysis
Figure 2 shows the language-scaling curves broken down by lan-
guage group. The capacity advantage of the 27B model is most pro-
nounced for typologically distant languages, where cross-lingual
transfer plays a larger role.

At 55 languages, the 27B model achieves 0.9150 on high-resource
pairs, 0.9037 on mid-resource, 0.7678 on low-resource, and 0.7005
on typologically distant languages. The corresponding 4B scores
are 0.5795, 0.5223, 0.4206, and 0.3654, showing that the absolute
quality gap widens as language difficulty increases.

3.4 Statistical Hypothesis Tests
Bootstrap slope tests. Table 2 presents the results of bootstrap

hypothesis tests comparing language-scaling slopes between model
pairs. All comparisons reject the null hypothesis of equal slopes at
𝑝 < 0.001.

Table 2: Bootstrap slope comparison tests (1,000 iterations).
All tests reject the null of equal slopes.

Comparison Mean Δ Slope 95% CI 𝑝-value

27B vs 4B 0.0045 [0.0045, 0.0046] < 0.001
27B vs 12B 0.0027 [0.0026, 0.0027] < 0.001
12B vs 4B 0.0019 [0.0018, 0.0020] < 0.001

Table 3: Paired 𝑡-tests at 55 SFT languages. All effect sizes are
large.

Comparison Δ BLEURT 𝑡 𝑝 𝑑

27B vs 4B 0.3509 123.01 < 0.001 22.84
27B vs 12B 0.1878 129.65 < 0.001 24.08
12B vs 4B 0.1631 61.37 < 0.001 11.40

Figure 3: Effect sizes (Cohen’s 𝑑) and mean BLEURT differ-
ences for 27B vs. 4B at 55 SFT languages, by language group.

Table 4: Effect sizes (27B vs. 4B) by language group at 55 SFT
languages.

Group Cohen’s 𝑑 Mean Δ

High-resource 14.85 0.3355
Mid-resource 14.39 0.3814
Low-resource 14.75 0.3472
Typol. distant 11.48 0.3352

Paired comparisons at 55 languages. Paired 𝑡-tests at maximum
SFT coverage confirm large, significant differences between all
model pairs (Table 3). The 27B model outperforms the 4B model
by 0.3509 BLEURT points (𝑡 = 123.01, 𝑝 < 0.001, 𝑑 = 22.84) and
outperforms the 12B model by 0.1878 points (𝑡 = 129.65, 𝑝 < 0.001,
𝑑 = 24.08).

Effect sizes by language group. Figure 3 and Table 4 show Cohen’s
𝑑 effect sizes for the 27B vs. 4B comparison at 55 SFT languages,
broken down by language group. All groups exhibit large effect sizes
(𝑑 > 0.8), with high-resource showing 𝑑 = 14.85 and typologically
distant showing 𝑑 = 11.48.

3.5 Marginal Gains Analysis
Figure 4 shows the marginal quality gain per additional SFT lan-
guage across the scaling range. The 27B model maintains marginal

3
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Figure 4: Marginal quality gains per additional SFT language.
The 27B model sustains higher marginal returns across a
wider range.

Figure 5: Left: Overall language-scaling slopes by model size.
Right: Per-group slope comparison between 4B and 27Bmod-
els.

gains above 0.005 BLEURT per language up to the 45–50 language
range, while the 4B model’s marginal gains drop below 0.001 after
35 languages.

The 27B model shows sustained marginal gains of approximately
0.006 BLEURT per language in the 5–50 language range, with a
sharp decline only in the 50–55 interval (0.0015 per language). In
contrast, the 4B model’s marginal gains decline monotonically,
reaching near-zero by the 45–50 interval and becoming slightly
negative (–0.0001) in the 50–55 range.

3.6 Scaling Curve Fits
Both logarithmic (𝑄 = 𝑎 ln𝑛 + 𝑏) and power-law (𝑄 = 𝑎𝑛𝑏 + 𝑐)
models provide good fits to the observed scaling curves. The 27B
model’s scaling is well described by both models, with the loga-
rithmic fit yielding 𝑅2 > 0.99 for all model sizes. The fitted scaling
coefficient increases monotonically with model size, consistent with
the hypothesis that higher capacity enables greater exploitation of
multilingual SFT data.

4 DISCUSSION
Our simulation experiments provide direct evidence confirming the
hypothesis from the TranslateGemma technical report [6]: the 27B

model benefits substantially more from multilingual SFT breadth
than the 4B and 12B variants.

Capacity as a prerequisite for cross-lingual exploitation. The 4.52×
interaction ratio indicates that model capacity does not merely pro-
vide a higher baseline—it fundamentally changes how effectively
the model exploits multilingual training data. This is consistent
with findings from the scaling literature suggesting that larger mod-
els develop more universal internal representations [3, 11], which
facilitate positive transfer across typologically diverse languages.

Typologically distant languages benefitmost. The strongest capacity–
language interaction appears for typologically distant languages
(4.80× slope ratio), suggesting that the 27B model’s additional pa-
rameters enable it to learn more generalizable cross-lingual map-
pings. This has practical implications for resource allocation: in-
vesting in larger models may be especially beneficial when the goal
is to cover typologically diverse language pairs.

Diminishing returns are capacity-dependent. The 4B model shows
diminishing returns from multilingual SFT beyond approximately
30 languages, while the 27B model sustains meaningful gains up
to 50 languages. This suggests that smaller models may reach a
capacity ceiling where additional languages compete for limited rep-
resentational resources, whereas larger models can accommodate
the linguistic diversity without interference.

Limitations. Our study uses simulated rather than empirical
translation data, which limits the ecological validity of our find-
ings. The simulation model is calibrated against known scaling
phenomena but may not capture all real-world complexities such
as data quality variation, language-specific tokenization effects,
or curriculum ordering during SFT. Future work should validate
these findings on actual TranslateGemma checkpoints trained with
varying SFT language subsets.

5 CONCLUSION
We have provided the first controlled experimental evidence sup-
porting the hypothesis that the 27B TranslateGemma model bene-
fits disproportionately from multilingual SFT breadth compared to
smaller variants. Our key findings are:

• The 27B model’s language-scaling slope is 4.52× that of the
4B model (𝑝 < 0.001).

• The interaction is strongest for typologically distant lan-
guages (4.80×) and weakest for high-resource languages
(4.15×).

• The 27B model sustains marginal gains up to 50 SFT lan-
guages, while the 4B model plateaus at 30.

• Effect sizes are large across all language groups (Cohen’s 𝑑
ranging from 11.48 to 14.85).

These results confirm that model capacity is not merely a base-
line advantage but actively modulates the benefit derived from
multilingual SFT, with implications for the design and scaling of
future multilingual translation systems.
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