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Membership Inference for Supplementary Materials:
Verifying Pretraining Inclusion of Jamrozik (2020)

Anonymous Author(s)
ABSTRACT
Large language models sometimes produce outputs that closely
resemble specific published texts, raising the question of whether
those texts appeared in the model’s pretraining corpus. Lupyan
et al. (2026) demonstrate that Gemini translates a Jabberwockified
passage into content closely matching a legal pre-emption example
from the supplementary materials of Jamrozik et al. (2020), but
acknowledge that it is uncertain whether those materials were in-
cluded in pretraining. We develop a computational framework com-
prising four complementary membership inference techniques—
verbatim 𝑛-gram overlap detection, perplexity-based inference,
perturbation-based detection, and reconstruction fidelity analysis—
to quantify the evidence for or against pretraining inclusion. Ap-
plied to the Jamrozik supplementary case, our 𝑛-gram analysis
reveals an F1 score of 0.667 at the bigram level between the model
output and the target passage, decaying to 0.046 at 𝑛=8, indicating
partial but not verbatim reproduction. Perturbation-based anal-
ysis shows that under a simulated memorization scenario, the
original text receives a 𝑧-score of −11.71 relative to paraphrases
(strongly favoring memorization), while without memorization
the 𝑧-score is −1.11 (inconclusive). Reconstruction fidelity anal-
ysis yields a longest common subsequence ratio of 0.824, with
token-level accuracy of 0.353 and semantic preservation of 0.773.
The aggregate membership inference score transitions from 0.349
(LIKELY_UNSEEN) at zeromemorization boost to 0.735 (LIKELY_SEEN)
at moderate boost, placing the Jamrozik case in the ambiguous re-
gion where the evidence is consistent with either memorization or
high-quality pattern-based reconstruction. These findings under-
score the difficulty of resolving pretraining data membership for
proprietary models and motivate development of more powerful
document-level membership inference methods.
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1 INTRODUCTION
A fundamental open question in the study of large language mod-
els (LLMs) is whether a given model output reflects genuine lin-
guistic competence—pattern-based reconstruction from learned
representations—or retrieval of memorized text encountered dur-
ing pretraining [1, 2]. This distinction has significant implications
for interpreting model capabilities, assessing copyright risks, and
understanding the nature of language understanding in neural mod-
els.

Lupyan et al. [6] bring this question into sharp focus through a
striking experiment: they present Gemini with a “Jabberwockified”
passage—English text in which content words are replaced with
nonsense words from Lewis Carroll’s Jabberwocky—and observe
that the model produces a translation closely matching a specific
legal pre-emption example from the supplementary materials of
Jamrozik et al. [5]. The authors note that this result could reflect
either (a) the model reconstructing plausible content through so-
phisticated patternmatching, or (b) themodel retrievingmemorized
text from its pretraining corpus. Crucially, they acknowledge that
whether these specific supplementary materials were included in
pretraining cannot be determined with certainty.

This uncertainty motivates our work. We develop a computa-
tional framework for membership inference [4, 11, 12] that com-
bines four complementary techniques to assess the likelihood that
a specific document was included in an LLM’s pretraining data. Our
approach does not require access to the model’s training data or
internal parameters—it operates solely on the model’s outputs and
public reference texts.

Our contributions are:
(1) Multi-technique membership inference framework.We

combine 𝑛-gram overlap analysis, perplexity-based inference,
perturbation-based detection [10], and reconstruction fidelity
analysis into an aggregate scoring system (§2).

(2) Application to the Jamrozik supplementary case.We apply
our framework to the specific case raised by Lupyan et al.,
finding that the evidence is consistent with both memorization
and reconstruction hypotheses (§4).

(3) Sensitivity analysis of membership inference. We charac-
terize how detection signals vary with memorization strength,
establishing the regime in which current techniques can and
cannot distinguish memorization from reconstruction (§5).

1.1 Related Work
Membership Inference for LLMs. Membership inference attacks

(MIAs) aim to determine whether a data point was part of a model’s
training set [12]. For LLMs, Shi et al. [11] propose Min-K% Prob,
which examines the distribution of token-level log-probabilities,
finding that memorized text exhibits higher minimum token prob-
abilities. Duan et al. [4] systematically evaluate MIAs on large
language models and find that existing methods achieve limited
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success on modern LLMs, motivating multi-signal approaches like
ours. Mattern et al. [8] propose neighborhood-based comparison,
measuring whether a model assigns systematically lower loss to
original text versus paraphrases. Meeus et al. [9] extend member-
ship inference to the document level for copyright assessment.

Training Data Extraction. Carlini et al. [2] demonstrate that GPT-
2 can emit memorized training data verbatim, while subsequent
work [1] quantifies memorization rates across model scales. Chang
et al. [3] develop methods to detect whether specific books were
included in ChatGPT’s training data. These extraction-based ap-
proaches complement our inference framework.

Machine-Generated Text Detection. Mitchell et al. [10] propose
DetectGPT,which uses probability curvature to distinguishmachine-
generated from human-written text. Our perturbation-based anal-
ysis adapts this principle to the membership inference setting:
rather than detecting whether text is machine-generated, we detect
whether the model has memorized specific human-written text.

2 METHODS
Our framework combines four complementary techniques, each
providing a different lens on the memorization question. We de-
scribe each technique and the aggregate scoring mechanism.

2.1 Technique 1: Verbatim N-gram Overlap
We extract all 𝑛-grams from both the target passage (Jamrozik
supplementary) and the model output, computing precision, recall,
F1, and Jaccard similarity for 𝑛 = 1, 2, . . . , 8. The decay profile of
F1 as 𝑛 increases is diagnostic: memorized reproduction maintains
high overlap at large 𝑛, while independent reconstruction shows
rapid decay.

For a target passage 𝑇 and model output 𝑂 , the 𝑛-gram overlap
metrics are:

Precision𝑛 =
|G𝑛 (𝑇 ) ∩ G𝑛 (𝑂) |

|G𝑛 (𝑂) |
(1)

Recall𝑛 =
|G𝑛 (𝑇 ) ∩ G𝑛 (𝑂) |

|G𝑛 (𝑇 ) |
(2)

F1𝑛 =
2 · Precision𝑛 · Recall𝑛
Precision𝑛 + Recall𝑛

(3)

where G𝑛 (·) denotes the set of distinct 𝑛-grams.

2.2 Technique 2: Perplexity-Based Inference
We compare the model’s perplexity on the target passage against
topicallymatched control passages. Amodel that hasmemorized the
target will assign it systematically lower perplexity than comparable
unseen text. We additionally compute the Min-K% score [11], which
averages the log-probabilities of the 𝐾% least probable tokens:

Min-K%(𝑥) = 1
|K |

∑︁
𝑡 ∈K

log𝑝 (𝑥𝑡 |𝑥<𝑡 ) (4)

where K is the set of 𝐾% tokens with lowest log-probability. This
score amplifies the memorization signal because a model that has
not seen the exact text will assign particularly low probability to
unusual word choices.

2.3 Technique 3: Perturbation-Based Detection
We generate 𝑀 = 25 meaning-preserving perturbations of the
target text via synonym substitution and measure whether the
model assigns systematically lower perplexity to the exact original.
The 𝑧-score quantifies this:

𝑧 =
PPL(original) − PPL(perturbations)

𝜎PPL (perturbations)
(5)

A large negative 𝑧-score (e.g., 𝑧 < −2) indicates the model has likely
memorized the specific phrasing rather than learning the topic
generally.

2.4 Technique 4: Reconstruction Fidelity
We measure the fidelity of the model’s output relative to the tar-
get using token-level accuracy, Levenshtein edit distance, longest
common subsequence (LCS) ratio, and semantic preservation (con-
tent word overlap). High LCS ratio with moderate token accuracy
suggests structural preservation with lexical variation—consistent
with pattern-based reconstruction. High token accuracy addition-
ally suggests verbatim memorization.

2.5 Aggregate Scoring
Each technique yields a score in [0, 1], combined via weighted
average:

𝑆 = 0.20 · 𝑆ngram + 0.25 · 𝑆ppl + 0.30 · 𝑆pert + 0.25 · 𝑆fid (6)

Perturbation and perplexity analyses receive higher weight as they
are more robust to coincidental overlap. The verdict thresholds are:
𝑆 > 0.65: LIKELY_SEEN; 0.35 < 𝑆 ≤ 0.65: UNCERTAIN; 𝑆 ≤ 0.35:
LIKELY_UNSEEN.

3 EXPERIMENTAL SETUP
Target Passage. We use a representative legal pre-emption pas-

sage from the Jamrozik et al. [5] supplementary materials (51 tokens
describing state preemption of a local firearms ordinance).

Model Output. We use the Gemini model’s translation of the
corresponding Jabberwockified passage as reported by Lupyan et
al. [6] (50 tokens).

Control Passages. We construct five control passages: three topi-
cally related (legal preemption domain) and two topically unrelated
(geology, biology), each approximately 30 tokens.

Simulation Protocol. Since we cannot access the model’s inter-
nal probabilities, we simulate token-level log-probabilities using
a calibrated model that accounts for token familiarity, contextual
predictability (bigram and trigram effects), and a tunable “seen
boost” parameter that simulates the effect of memorization. We
evaluate across 13 levels of memorization boost from 0.0 to 1.5. All
experiments use a fixed random seed (numpy default_rng(42)) for
reproducibility.

4 RESULTS
4.1 N-gram Overlap Analysis
Table 1 presents the 𝑛-gram overlap between the target passage
and the model output across 𝑛 = 1 to 8.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Membership Inference for Supplementary Materials:
Verifying Pretraining Inclusion of Jamrozik (2020) Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: N-gram overlap between Jamrozik target and model
output.

𝑛 Target Output Shared Prec Recall F1

1 38 37 31 0.838 0.816 0.827
2 47 46 31 0.674 0.660 0.667
3 48 47 25 0.532 0.521 0.526
4 48 47 18 0.383 0.375 0.379
5 47 46 12 0.261 0.255 0.258
6 46 45 8 0.178 0.174 0.176
7 45 44 4 0.091 0.089 0.090
8 44 43 2 0.047 0.045 0.046

Table 2: Perplexity and Min-K% scores for the target passage
under varying memorization boost, compared with control
passages.

Passage / Boost PPL Mean LogP Min-K%

Target (boost=0.0) 6.55 −1.879 −2.704
Target (boost=0.4) 4.79 −1.566 −2.453
Target (boost=0.8) 3.29 −1.190 −1.970
Target (boost=1.0) 2.57 −0.945 −1.625
Target (boost=1.5) 1.67 −0.513 −1.377

Legal control 1 9.61 −2.263 −3.440
Legal control 2 9.29 −2.229 −3.497
Legal control 3 9.28 −2.228 −3.285
Unrelated control 1 10.32 −2.334 −3.741
Unrelated control 2 9.77 −2.279 −3.355

The unigram F1 of 0.827 reflects high lexical similarity, consistent
with the passages describing the same legal concept. The F1 decays
steadily, reaching 0.046 at 𝑛=8, with only 2 shared 8-grams out of 44.
This decay profile is intermediate between what we would expect
for verbatim memorization (slow decay, F1 > 0.5 at 𝑛=5) and fully
independent reconstruction (F1 ≈ 0 at 𝑛=3). Notably, all five control
passages achieve F1 = 0 at 𝑛 ≥ 2, confirming that the target–output
overlap is specific and non-trivial.

4.2 Perplexity and Min-K% Analysis
Table 2 shows perplexity scores across memorization boost levels.

Even without memorization boost (boost=0.0), the target passage
receives lower perplexity (6.55) than all controls (9.28–10.32). This
is expected because the target passage uses common legal language
with predictable bigram patterns. With moderate memorization
boost (0.8), the perplexity drops to 3.29, creating a clear separation
from controls. The Min-K% scores follow the same pattern, with the
gap between target and controls widening as memorization boost
increases.

4.3 Perturbation-Based Detection
Table 3 reports perturbation analysis results.

Under the strong memorization scenario, the 𝑧-score of −11.71
provides overwhelming evidence: the original text’s perplexity
is 11.71 standard deviations below the mean of its perturbations.
Even weak memorization (boost=0.3) produces 𝑧 = −4.36, well

Table 3: Perturbation-based detection results. Negative 𝑧-
scores indicate the original receives lower perplexity than
perturbations.

Scenario Orig PPL Mean Pert PPL Ratio 𝑧-score

Seen strong (1.0) 2.44 6.96 0.351 −11.71
Seen moderate (0.6) 3.77 6.35 0.594 −5.44
Seen weak (0.3) 4.66 6.34 0.735 −4.36
Unseen (0.0) 6.37 6.93 0.919 −1.11

Control: legal 1 — — — −0.28
Control: legal 2 — — — +0.43
Control: legal 3 — — — +0.77

beyond the 𝑧 < −2 threshold. Without memorization, 𝑧 = −1.11 is
inconclusive—comparable to the control passages (−0.28 to +0.77).
This demonstrates that perturbation-based detection is highly sensi-
tive when memorization is present but produces ambiguous results
without it.

4.4 Reconstruction Fidelity
The reconstruction fidelity analysis reveals:
• Token accuracy: 0.353 (35.3% of tokens match position-by-

position).
• LCS ratio: 0.824 (82.4% of target tokens appear in the output in

order).
• Normalized edit distance: 0.176 (9 edits across 51 tokens).
• Semantic preservation: 0.773 (77.3% of content words pre-

served).
The high LCS ratio combined with moderate token accuracy indi-

cates that the model preserves the structural skeleton of the passage
while substituting synonyms at many positions (e.g., “ordinance”
→ “regulation”, “limits” → “boundaries”). This pattern is consis-
tent with both hypotheses: a model that memorized the passage
might still produce synonymous variants through its generation
process, while a model performing pattern-based reconstruction
would naturally use its preferred phrasings for the same concepts.

All control passages achieve dramatically lower fidelity (token
accuracy ≤ 0.059, LCS ratio ≤ 0.235), confirming that the target–
output similarity is passage-specific.

5 SENSITIVITY ANALYSIS
Figure ?? (see data) shows how the aggregate membership score
varies with memorization strength. The score transitions from 0.349
(LIKELY_UNSEEN) at boost = 0.0 to 0.463 (UNCERTAIN) at boost =
0.1 and 0.706 (LIKELY_SEEN) at boost = 0.2, saturating at 0.735 for
boost ≥ 0.4.

This rapid transition reveals a critical finding: our framework
can reliably detect memorization once the signal exceeds a modest
threshold (boost ≥ 0.2), but the observed model output—without
knowledge of the true memorization level—falls in the ambiguous
zone where both explanations are plausible.

The Min-K% threshold sensitivity analysis (Section 5.1) further
shows that the gap between seen and unseen scores is robust across
K values from 5% to 50%, with the largest separation at 𝐾 = 40%
(gap = 0.967) and smallest at 𝐾 = 20% (gap = 0.631).
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Table 4: Min-K% sensitivity across threshold values.

𝐾 (%) Seen Unseen Control Seen–Unseen Gap

5 −1.157 −2.019 −3.263 0.862
10 −1.260 −2.032 −3.085 0.772
20 −1.970 −2.602 −3.741 0.631
30 −1.669 −2.488 −3.362 0.819
40 −1.452 −2.419 −2.993 0.967
50 −1.508 −2.221 −2.799 0.714

5.1 Min-K% Threshold Sensitivity
The Min-K% method’s effectiveness depends on the choice of 𝐾 .
Our analysis shows consistent separation across thresholds:

6 DISCUSSION
Our analysis places the Jamrozik supplementary case in an inher-
ently ambiguous region of the membership inference landscape.
The 𝑛-gram overlap profile shows meaningful but non-verbatim
reproduction—themodel generates synonymous substitutions rather
than exact copies. This is consistent with both memorization (the
model learned the passage but generates from it stochastically) and
reconstruction (the model independently arrives at similar phrasing
through pattern matching over legal language).

The perturbation analysis provides the sharpest discriminative
tool: under memorization, it produces overwhelming evidence (𝑧 =
−11.71), while without memorization the signal is indistinguishable
from noise (𝑧 = −1.11). However, this requires knowing the ground
truth memorization level, which is precisely what we are trying to
determine.

Implications for the Lupyan et al. (2026) finding. Our results sup-
port the authors’ cautious stance: the evidence is genuinely ambigu-
ous. The high LCS ratio (0.824) and significant 𝑛-gram overlap at
moderate 𝑛 values (F1 = 0.379 at 𝑛=4) suggest the model had some
form of exposure to the target content, but whether this exposure
was direct (pretraining inclusion) or indirect (exposure to similar
legal texts discussing preemption) cannot be resolved by output
analysis alone.

Limitations. Our simulation-based approach has several limita-
tions. First, we simulate token-level probabilities rather than obtain-
ing them from the actual model, which limits the precision of our
perplexity-based analyses. Second, our perturbation strategy uses
a fixed synonym dictionary, which may not capture all meaning-
preserving variations. Third, the aggregate scoring weights are
heuristically chosen and may not generalize across all document
types.

Future Directions. More powerful membership inference tech-
niques are needed, particularly those that can operate at the doc-
ument level [7, 9] rather than the passage level. Dataset-level in-
ference [7], which tests whether a collection of documents (e.g., an
entire journal’s supplementary materials) was included in training,
may provide more statistical power than single-passage analysis.

7 CONCLUSION
We developed a four-technique membership inference framework
for assessing whether the supplementary materials of Jamrozik et
al. (2020) were included in the pretraining corpus of the Gemini
models evaluated by Lupyan et al. (2026). Our analysis reveals that
the target passage and model output share an 𝑛-gram F1 of 0.667
at the bigram level and an LCS ratio of 0.824, with perturbation-
based 𝑧-scores ranging from −11.71 (strong memorization) to −1.11
(no memorization). The aggregate membership score transitions
sharply from 0.349 to 0.735 with increasing memorization strength,
placing the actual case in the ambiguous zone. These results confirm
the fundamental difficulty of resolving pretraining membership
for proprietary models from output analysis alone and motivate
the development of more powerful document-level membership
inference methods.
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