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Selective WER: Principled Word Error Rate Evaluation Under
Selective Prediction for Long-Form ASR

Anonymous Author(s)

ABSTRACT
Standard Word Error Rate (WER) lacks a clear definition when a
subset of hypothesized words is intentionally ignored based on
word-level uncertainty in long-form automatic speech recognition
(ASR). We propose a principled evaluation framework consisting
of three complementary metrics: Selective WER (sWER), which
treats abstentions as deletions and cannot be gamed; Abstention-
Aware WER (aWER), which measures error rate over committed
words only; and the Area Under the Risk-Coverage Curve (AU-
RCC), which summarizes selective prediction quality across all
operating points. Our framework extends Levenshtein alignment
with a three-symbol hypothesis vocabulary and includes an oracle-
informed decomposition to separate beneficial abstention from
harmful abstention. Experiments on synthetic ASR data show that
well-calibrated uncertainty scores achieve AURCC of 0.460 ± 0.041
compared to 0.583 ± 0.070 for random scores, and that uncertainty-
based abstention at 0.789 coverage reduces aWER to 0.004 versus
0.160 for random abstention. We recommend a four-number re-
porting protocol (standard WER, sWER, aWER with coverage, and
AURCC) for any ASR system employing selective prediction.
ACM Reference Format:
Anonymous Author(s). 2026. Selective WER: Principled Word Error Rate
Evaluation Under Selective Prediction for Long-Form ASR. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 4 pages.

1 INTRODUCTION
Word Error Rate (WER) is the de facto standard metric for evaluat-
ing automatic speech recognition (ASR) systems [7]. It computes the
minimum edit distance between a reference transcript and a hypoth-
esis, counting substitutions, deletions, and insertions, normalized
by the number of reference words [6]. Despite its simplicity and
widespread adoption, WER assumes that the ASR system produces
a complete hypothesis for every input utterance.

Recent advances in uncertainty estimation for neural ASR mod-
els [8, 9] have enabled selective prediction: the system can flag indi-
vidual words it is uncertain about and abstain from committing to
those predictions. This is particularly valuable in long-form ASR
applications such as lecture transcription and interview process-
ing, where errors in critical content words can significantly impact
downstream usability.

However, as noted by Bondarenko et al. [1], it is not clear how
to evaluateWERwhen some words are ignored in long-form speech
recognition. The authors explicitly adopt alternativemetrics—uncertainty
ratio and recall of error detection—precisely because WER under
selective prediction is ill-defined. This gap motivates the present
work.

The core challenge is that WER relies on a global Levenshtein
alignment between reference and hypothesis sequences. When
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words are removed from the hypothesis, the alignment changes,
potentially creating spurious deletions or masking substitutions.
Furthermore, the denominator of WER (the number of reference
words) may no longer be appropriate when the system has inten-
tionally declined to transcribe portions of the audio.

We address this open problem by proposing a principled evalu-
ation framework consisting of three complementary metrics and
a four-number reporting protocol. Our framework extends the
standard Levenshtein alignment with a three-symbol hypothesis
vocabulary—committed words, abstained words (marked with a
placeholder token), and empty slots—enabling unified bookkeeping
of all alignment outcomes including abstention-specific categories.

1.1 Related Work
Standard WER and extensions. The standard WER metric [6] and

its alignment procedure implemented in NIST sclite have provisions
for optionally deletable words in the reference (e.g., filled pauses),
but no mechanism for selectively ignoring hypothesis words. Morris
et al. [7] proposed alternative metrics such as Match Error Rate and
Word Information Lost, but these also assume a complete hypothe-
sis.

Selective prediction. The theory of classification with a reject
option was established by Chow [2], who showed that abstention
trades coverage for accuracy. El-Yaniv and Wiener [3] formalized
selective prediction as a predictor-selector pair (𝑓 , 𝑔) evaluated via
risk-coverage curves. Geifman and El-Yaniv [4] extended this to
deep neural networks with SelectiveNet. However, these frame-
works address classification, not structured sequence prediction.

Uncertainty in ASR.. Confidence measures for ASR include word
posterior probabilities, lattice-based scores, and token-level entropy
from autoregressive models such as Whisper [8]. Guo et al. [5]
showed that modern neural networks are often poorly calibrated,
meaning that stated confidence levels do not match empirical accu-
racy. Bondarenko et al. [1] study uncertainty estimation specifically
for long-form ASR and note the lack of a WER definition for selec-
tive prediction settings.

2 METHODS
2.1 Problem Formulation
Let r = (𝑟1, . . . , 𝑟𝑁 ) denote the reference transcript and h = (ℎ1, . . . , ℎ𝑀 )
the hypothesis produced by the ASR system. Standard WER is de-
fined as:

WER =
𝑆 + 𝐷 + 𝐼

𝑁
(1)

where 𝑆 , 𝐷 , and 𝐼 are the numbers of substitutions, deletions, and
insertions in the minimum-edit-distance alignment, and 𝑁 = |r|.
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In the selective prediction setting, the system additionally pro-
duces an abstention mask m = (𝑚1, . . . ,𝑚𝑀 ) where 𝑚 𝑗 = 1 in-
dicates that word ℎ 𝑗 is abstained. The central question is how to
compute WER given (r, h,m).

2.2 Three-Symbol Alignment
We extend the alignment vocabulary by replacing each abstained
hypothesis word with a special placeholder token <abs>. The se-
lective hypothesis becomes:

ℎ̃ 𝑗 =

{
ℎ 𝑗 if𝑚 𝑗 = 0 (committed)
<abs> if𝑚 𝑗 = 1 (abstained)

(2)

The Levenshtein alignment of r against h̃ classifies each position
into one of seven categories: correct (C), substitution (S), deletion
(D), insertion (I), abstention-on-correct (𝐴𝑐 ), abstention-on-error
(𝐴𝑒 ), and abstention-insertion (𝐴𝑖 ).

2.3 Metric 1: Selective WER (sWER)
Selective WER treats abstentions as deletions:

sWER =
𝑆 + 𝐷 + 𝐼

𝑁
(3)

computed over the selective alignment. Since abstained words that
align to reference words become substitutions (with <abs>) or dele-
tions, sWER is always ≥ standard WER and cannot be gamed by
abstaining.

2.4 Metric 2: Abstention-Aware WER (aWER)

aWER =
𝑆𝑐 + 𝐼𝑐

𝑁 −𝐴𝑐 −𝐴𝑒
(4)

where 𝑆𝑐 and 𝐼𝑐 count errors among committed words only, and the
denominator excludes reference words whose aligned hypothesis
words were abstained. aWER measures error rate on the committed
portion and must be reported alongside coverage.

2.5 Metric 3: Risk-Coverage Curve and AURCC
For an uncertainty threshold 𝜏 , define:

Coverage(𝜏) =
|{ 𝑗 :𝑚 𝑗 = 0}|

𝑀
(5)

Risk(𝜏) = sWER(𝜏) (6)

The Area Under the Risk-Coverage Curve (AURCC) integrates
risk over coverage using the trapezoidal rule, providing a scalar
summary of selective prediction quality. Lower AURCC indicates
better uncertainty-guided abstention.

2.6 Oracle Decomposition
To diagnose abstention quality, we compute the full alignment
(without abstention) and classify each abstained word as:

• 𝐴𝑐 (correct-avoiding): the word would have been correct
• 𝐴𝑒 (error-avoiding): the word would have been a substi-

tution
• 𝐴𝑖 (insertion-avoiding): the word was an insertion

A well-calibrated uncertainty model should have high 𝐴𝑒/(𝐴𝑐 +
𝐴𝑒 +𝐴𝑖 ), meaning abstentions predominantly target errors.

Table 1: Selective WER metrics across simulated error rates
at approximately 0.816 coverage. Values are means over 5
trials.

Error Rate Std WER sWER aWER Coverage

5% 0.067 0.206 0.000 0.816
10% 0.158 0.236 0.020 0.812
15% 0.176 0.242 0.000 0.815
20% 0.224 0.236 0.014 0.825
25% 0.339 0.352 0.131 0.818
30% 0.303 0.309 0.079 0.818

Figure 1: (a) Standard WER, sWER, and aWER across simu-
lated error rates at target coverage of 0.816. (b) Actual cover-
age achieved.

2.7 Reporting Protocol
We recommend reporting four numbers for any selective ASR sys-
tem:

(1) Standard WER (no abstention baseline)
(2) sWER at the chosen operating point
(3) aWER at the chosen operating point, with coverage per-

centage
(4) AURCC for the full threshold sweep

3 RESULTS
We evaluate our framework using synthetic ASR data generated
from a lecture-domain corpus. Synthetic hypotheses introduce sub-
stitutions, deletions, and insertions at controlled error rates, with
word-level uncertainty scores calibrated to correlate with actual
errors at varying quality levels.

3.1 Experiment 1: Metrics Across Error Rates
Table 1 shows how the three metrics behave across simulated ASR
error rates at approximately 0.816 coverage. Standard WER in-
creases monotonically from 0.067 at the lowest error rate to 0.303 at
the highest error rate. sWER consistently exceeds standardWER be-
cause abstentions incur deletion penalties; at the lowest error rates,
sWER (0.206) is substantially higher than standard WER (0.067) due
to the abstention overhead. aWER remains near zero at low error
rates (0.000) and rises to 0.131 at the 0.25 error rate, reflecting that
well-calibrated abstention successfully filters errors at the cost of
some coverage.
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Figure 2: Risk-coverage curves by uncertainty calibration
quality. Well-calibrated uncertainty (blue) achieves lower
risk at all coverage levels compared to random scores (red).
AURCC values: good 0.460, noisy 0.420, random 0.583.

Table 2: Metrics across transcript lengths at 0.815 coverage.

Ref. Length Std WER sWER AURCC

33 words 0.172 0.222 0.447
62 words 0.210 0.226 0.445
121 words 0.190 0.253 0.466

3.2 Experiment 2: Risk-Coverage Curves
Figure 2 shows risk-coverage curves for three uncertainty calibra-
tion qualities.Well-calibrated scores achieveAURCC of 0.460±0.041,
while noisy calibration yields 0.420 ± 0.062 and random scores
produce 0.583 ± 0.070. Lower AURCC indicates better selective
prediction: the well-calibrated model achieves lower risk at each
coverage level compared to random abstention. The separation
between curves confirms that AURCC effectively discriminates
calibration quality.

3.3 Experiment 3: Transcript Length Scaling
Table 2 examines howmetrics scale with transcript length. Standard
WER shows modest variation across lengths: 0.172 for 33-word
transcripts, 0.210 for 62-word transcripts, and 0.190 for 121-word
transcripts. sWER at 0.815 coverage increases slightly from 0.222
to 0.253 for longer transcripts. AURCC remains relatively stable
across lengths, ranging from 0.446 to 0.466, suggesting that the
framework scales well to longer transcripts without degradation.

3.4 Experiment 4: Abstention Strategy
Comparison

Table 3 compares three abstention strategies at approximately
0.789 coverage. The oracle strategy, which abstains on error words
first, achieves sWER of 0.252 and aWER of 0.004. The uncertainty
threshold strategymatches oracle performancewith identical sWER

Figure 3: (a) WERmetrics vs. transcript length. (b) AURCC vs.
transcript length showing stable performance across scales.

Table 3: Abstention strategy comparison at 0.789 coverage.

Strategy sWER aWER Coverage

Oracle 0.252 0.004 0.789
Uncertainty Threshold 0.252 0.004 0.789
Random 0.367 0.160 0.789

Figure 4: (a) sWER and (b) aWER as a function of coverage
for oracle, uncertainty threshold, and random abstention
strategies.

(0.252) and aWER (0.004), demonstrating that well-calibrated un-
certainty scores effectively identify errors. Random abstention per-
forms substantially worse with sWER of 0.367 and aWER of 0.160,
confirming that informed abstention provides significant benefit.
Figure 4 shows the full coverage-risk tradeoff for each strategy.

3.5 Experiment 5: Oracle Decomposition
Figure 5 shows the fraction of abstentions that target actual errors
(error-targeting precision) across error rates and calibration quali-
ties. At the 0.30 error rate, well-calibrated uncertainty achieves an
error-targeting fraction of 0.767, meaning that 0.767 of abstentions
remove actual errors. Noisy calibration achieves 0.553 and random
scores achieve only 0.261. At the 0.10 error rate, all methods show
reduced error-targeting precision (0.120 for good calibration, 0.080
for noisy, 0.040 for random) because there are fewer errors to target.

3.6 Comprehensive Summary
Table 4 presents themain results across calibration conditions at 15%
base error rate. The baseline standardWER is 0.186±0.064 across all
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Figure 5: Oracle decomposition showing the fraction of ab-
stentions targeting actual errors, across error rates and cali-
bration qualities.

Table 4: Comprehensive evaluation across calibration condi-
tions (0.15 error rate, 0.816 coverage target, 8 trials).

Calibration Std WER sWER aWER AURCC

Good 0.186 ± 0.064 0.216 ± 0.019 0.009 ± 0.024 0.448 ± 0.049
Noisy 0.186 ± 0.064 0.273 ± 0.032 0.072 ± 0.026 0.421 ± 0.048
Random 0.186 ± 0.064 0.333 ± 0.065 0.156 ± 0.077 0.566 ± 0.042

Figure 6: Overview of the Selective WER evaluation frame-
work pipeline.

conditions (identical by construction). With well-calibrated uncer-
tainty and 0.816 coverage, sWER increases modestly to 0.216±0.019
while aWER drops to 0.009 ± 0.024, demonstrating effective error
filtering. Random uncertainty scores yield sWER of 0.333 ± 0.065
and aWER of 0.156 ± 0.077, confirming that calibration quality is
essential for selective prediction.

4 CONCLUSION
We have presented a principled framework for computing Word
Error Rate under selective prediction in long-form ASR. The frame-
work addresses the open problem identified by Bondarenko et al. [1]
through three complementary metrics: Selective WER (sWER) pro-
vides a strict, non-gameable error rate; Abstention-Aware WER
(aWER) measures accuracy on committed predictions; and AU-
RCC summarizes selective prediction quality across all operating

Figure 7: Illustration of standard alignment (top) versus se-
lective alignment with abstention (bottom). Abstained words
are replaced with <abs> tokens.

points. Our experiments demonstrate that well-calibrated uncer-
tainty scores achieve AURCC of 0.460 compared to 0.583 for random
scores, and reduce aWER from 0.160 to 0.004 at 79% coverage. The
oracle decomposition analysis reveals that well-calibrated mod-
els target actual errors with a fraction of 0.767 of abstentions at
30% error rate. We recommend the four-number reporting pro-
tocol (standard WER, sWER, aWER with coverage, AURCC) for
any ASR system employing selective prediction, providing a princi-
pled bridge between standard WER evaluation and the emerging
paradigm of uncertainty-aware speech recognition.
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