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Marginalizing Over BPE Tokenizations for Calibrated Word-Level
Probabilities in Whisper

Anonymous Author(s)

ABSTRACT

Byte-pair encoding (BPE) tokenizers map a single word to multiple
valid token sequences—different subword splits, casing variants,
and spacing decompositions—causing the true word-level proba-
bility to be distributed across exponentially many paths through
the decoder. Current practice estimates word confidence from the
single canonical BPE segmentation, systematically underestimating
the true probability. We formalize this problem by constructing a
segmentation DAG whose source-to-sink paths enumerate all valid
tokenizations of a word, and propose a forward algorithm that
marginalizes over this DAG using the decoder’s conditional token
probabilities. We analyze 184 English words spanning 2-15 charac-
ters using Whisper’s GPT-2 tokenizer and find that: (i) the number
of valid tokenizations grows exponentially with word length, reach-
ing a median of 3,006 paths for words of 11+ characters; (ii) ignoring
alternative tokenizations underestimates log-probability by a me-
dian of 0.03 nats for short words but up to 1.58 nats for longer words;
(iii) including case variants adds a further 1.09 nats of marginal-
ization gap on average; and (iv) a beam-pruned forward algorithm
with width 10 recovers >99.9% of the exact marginal probability for
short words and >96% for long words. Our approach provides prin-
cipled, calibrated word-level uncertainty estimates for BPE-based
speech recognition and language models, directly addressing the
open problem identified by Bondarenko et al. (2026).
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1 INTRODUCTION

Automatic speech recognition (ASR) systems increasingly rely on
large-scale neural models such as Whisper [11] that produce text
transcriptions from audio input. These models are deployed in high-
stakes applications—medical dictation, legal transcription, acces-
sibility services—where word-level confidence estimation is critical:
given a transcribed word, how certain is the model that it correctly
decoded the spoken utterance?

Whisper and similar models use byte-pair encoding (BPE) [12]
to segment text into subword tokens. The decoder is autoregres-
sive, producing one token at a time with associated conditional
probabilities. To obtain a word-level probability, practitioners typi-
cally multiply the conditional probabilities of the tokens composing
the canonical BPE segmentation of the word. However, BPE tok-
enizers are ambiguous: the same word admits multiple valid token
sequences. For example, the word “cat” in Whisper’s GPT-2 tok-
enizer can be represented as:
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The single token ¢ cat’ (token ID 3797)

Two tokens: ¢ ¢’ + ‘at’ (IDs 269, 265)

Two tokens: ¢ ca’ + ‘t’ (IDs 1275, 83)

Three tokens: ¢ ¢’ + ‘@’ + ‘t’ (IDs 269, 64, 83)

o And four additional paths involving the space prefix

Including casing variants (¢ Cat’, ¢ CAT’) further expands the set.
In total, the word “cat” has 8 valid tokenization paths for a single
casing, and 24 paths across all case variants.

Bondarenko et al. [2] explicitly noted this issue in the Pisets
speech recognition system, observing that probability mass is spread
across tokenizations, but deferred a solution to future work. The
true word probability requires marginalizing over all valid tokeniza-
tion sequences:

P(word | audio) = Z
seS(word)

P(s | audio) (1)

where S(word) is the set of all token sequences whose concatenated
decoded strings equal the target word. Using only the canonical
segmentation yields P(s* | audio), which is a lower bound on the
true word probability.

In this paper, we make the following contributions:

(1) We formalize the tokenization marginalization problem
through a segmentation DAG whose paths enumerate all
valid BPE tokenizations of a word, including casing and
spacing variants (Section 2.2).

(2) We propose exact and beam-pruned forward algorithms for
computing the marginalized word probability (Section 2.3).

(3) We provide the first systematic empirical analysis of the
marginalization gap across 184 English words, quantifying
how word length, path count, and casing variants affect
probability underestimation (Section 3).

(4) We demonstrate that beam-pruned marginalization with
width 10 recovers >99.9% of exact marginal probability for
typical words, making the approach practical for real-time
ASR (Section 3.3).

1.1 Related Work

BPE Tokenization and Ambiguity. Sennrich et al. [12] introduced
BPE for neural machine translation, creating a fixed vocabulary
of subword units through iterative merging of frequent character
pairs. The greedy merge procedure produces a canonical segmenta-
tion, but the vocabulary admits many other valid decompositions.
Kudo [7] proposed subword regularization, training models by sam-
pling from multiple tokenizations to improve robustness. Provilkov
et al. [10] extended this idea with BPE-dropout, randomly dropping
merges during training. Both works address the training side of
tokenization ambiguity; our work addresses the inference side—
correctly aggregating probability at decoding time.

Marginalization Over Tokenizations. Cao and Rimell [3] demon-
strated that language model perplexity varies across tokenizations
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of the same text and proposed marginalizing over segmentations
using a lattice-based forward algorithm for evaluation. Their work
is the most directly relevant prior art. We adapt and extend their
approach to the autoregressive speech recognition setting, where
conditional probabilities depend on audio context and preceding
token history.

Uncertainty in Neural Sequence Models. Guo et al. [5] showed
that modern neural networks are often miscalibrated, producing
overconfident predictions. Malinin and Gales [8] studied uncer-
tainty estimation in autoregressive models, distinguishing between
data (aleatoric) and model (epistemic) uncertainty. He et al. [6]
evaluated confidence elicitation in large language models. In ASR,
Bondarenko et al. [2] used the minimum or average of token-level
log-probabilities as a word-level uncertainty measure but acknowl-
edged that the tokenization ambiguity biases these estimates.

Lattice and DAG Methods in ASR.. The CTC (Connectionist Tem-
poral Classification) algorithm [4] marginalizes over alignment
paths for sequence labeling using a forward-backward algorithm
on a lattice. Weighted finite-state transducers (WFSTs) [9] pro-
vide a general framework for lattice-based computation in speech
recognition, enabling efficient composition of acoustic, lexical, and
language models. The wav2vec 2.0 framework [1] uses CTC for
self-supervised speech representation learning. Our segmentation
DAG is structurally analogous to a CTC lattice but operates over
tokenization paths rather than temporal alignment paths.

2 METHODS

2.1 Problem Formulation

Consider an autoregressive decoder that generates tokens t1, ta, . . ., tg
with conditional probabilities P(#; | ;.x_1, @) where a denotes the
audio conditioning (encoder hidden states). The probability of a
specific token sequence s = (t1,. .., tg) is:

K
P(s|a) = [ | Pt | tix1.a) ®)
k=1

Given a target word w (a character string), let S(w) denote the
set of all token sequences whose concatenated decoded strings
equal w. The marginalized word probability is defined by Equa-
tion 1. In practice, the word appears in context: preceding to-
kens 7 = (t1,. .., tp) have already been decoded. The conditional
marginalized probability is:

Is|
Pwlma)= > [|PGk | 7 ®s1s-1,0) 3)

seS(w) k=1

where @ denotes concatenation.
The marginalization gap quantifies the probability mass missed
by using only the canonical tokenization s*:

A(w) =logP(w | m,a) —log P(s* | m,a) > 0 (4)
The inequality holds because the canonical tokenization is one

element of the sum.

2.2 Segmentation DAG Construction
We model S(w) as a directed acyclic graph (DAG):

Anon.

Definition 2.1 (Segmentation DAG). Given a word string w of
length n and a vocabulary V mapping token IDs to strings, the
segmentation DAG G = (N, E) has:

e Nodes N ={0,1,...,n} representing character positions.

e Anedge (i, j, tid) € E exists iff the substring w(i : j] equals
the decoded string of token tid € V.

e Node 0 is the source; node n is the sink.

o Each source-to-sink path corresponds to a valid tokeniza-
tion of w.

Construction Algorithm. We first build a reverse lookup table
L : string — list[tid] by iterating over all vocabulary entries and
mapping each decoded string to its token ID(s). Then, for each pair
(i,j) with 0 < i < j < n, we check whether w[i : j] € L and add
the corresponding edges. This takes O(n? - [V|) time in the worst
case but is fast in practice because most substrings are not valid
tokens.

Casing Variants. In Whisper, ‘cat’, ‘Cat’, and ‘CAT’ are dis-
tinct tokens. To marginalize over all surface forms of a spoken
word, we construct separate DAGs for the lowercase, title-case,
and uppercase variants of w, retaining only those with at least one
complete source-to-sink path. The marginalized probability sums
over all variant DAGs:

P(w|ma)= ) > P(sIma) )

vevariants(w) s€S(0)

DAG Properties. Let |E| denote the edge count and Npaips the
number of source-to-sink paths. The path count can be computed in
O(|E|) time via dynamic programming on the topologically sorted
DAG. The path count grows exponentially with word length n
because each character position can potentially split the word in
multiple ways.

2.3 Forward Algorithm for Exact
Marginalization
The forward algorithm computes the total log-probability over all
DAG paths, accounting for the autoregressive nature of the decoder.
At each character position i, we maintain a set of states {(h, az,) }
where h € V* is a token history (the sequence of token IDs on
the path from source to position i) and ay = log P(h | =, a) is the
accumulated log-probability.
For each outgoing edge (i, j, tid), we compute:
¢ =logP(tid | 7 ® h,a) (6)
by querying the decoder, and propagate:

Apetid < logsumexp(apetid, ap + ) 7)
The marginalized log-probability is obtained at the sink:
log P(w | 7, a) = logsumexpy, cgink X (8)
Algorithm 1 presents the pseudocode.
Complexity Analysis. The exact algorithm maintains all distinct
token histories at each node. In the worst case, the number of

distinct histories at node i equals the number of source-to-i paths,
which can be exponential. However, for typical English words:

o Short words (2-3 chars): <4 paths, <6 edges
e Medium words (4-5 chars): <16 paths, <14 edges
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Algorithm 1 Exact Forward Algorithm on Segmentation DAG

Require: DAG G = (N, E) for word w, decoder D, prefix tokens =
Ensure: logP(w | 7, a)

1: Initialize a[0][0] « 0 {log-prob 0 = prob 1}

2: for positioni =0ton—1do

3. for all histories (h, a3,) € a[i] do
4 ctx — 7@ h
5 for all edges (i, j, tid) € E do
6 ¢ « D.logprob(tid | ctx, a)
7 h «— ho (tid)
8
9

alj][h'] « logsumexp(a[j][H' ], ap +£)
end for
10: end for
11: end for
12: return logsumexp{a[n][h] : h € a[n]}

e Long words (6-7 chars): <110 paths, <26 edges
The decoder query (computing log P(tid | ctx, a)) dominates the
per-edge cost. The total number of decoder queries is bounded by
i lali]] - |out(i)|, where out(i) is the number of outgoing edges
at node i.

2.4 Beam-Pruned Forward Algorithm

For words with thousands of paths (e.g., “international” with 3,642
paths), exact computation becomes expensive. We apply beam prun-
ing: at each DAG node i, retain only the B most probable partial
paths (histories with highest ay,).

The beam-pruned algorithm produces a lower bound on the true
marginal probability, because discarded paths carry non-negative
probability mass. The bound improves monotonically with beam
width:

log Pg(w) < log Ppsq(w) < log P(w) 9)

We define relative coverage as the ratio Pg(w)/P(w), measuring

how much of the exact marginal the beam approximation recovers.

2.5 Upper and Lower Bounds

Before running full marginalization, we can compute cheap bounds
to assess whether marginalization is necessary:

Lower Bound. The probability of the canonical (greedy BPE) tok-
enization s*. This is what current systems already compute, at zero
additional cost.

Upper Bound. Using a single decoder forward pass (with the
greedy path’s context), we obtain log-probabilities for all edges.
We then compute a relaxed upper bound via backward dynamic
programming:

U[i] = logsumexp; ; yiq)cg (log P(tid) + U[;]) (10)
with U [n] = 0. This bound is loose because it assumes independence
across positions, but it is cheap (O(|E|) after one decoder pass) and
useful for gating: if U[0] — log P(s*) is small, full marginalization
is unnecessary.

2.6 Formal Properties of the Forward Algorithm
We establish two key properties of the forward algorithm.

Conference’17, July 2017, Washington, DC, USA

PROPOSITION 2.2 (EXACTNESS). If the decoder is queried with the
correct context at every edge, Algorithm 1 computes log P(w | 7, a)
exactly as defined in Equation 3.

Proor. Each source-to-sink path s = (#1,...,tx) in the DAG
contributes exactly [—[f:1 P(ty | 7 ®t1.6_1, a) to the sink node. The
forward algorithm accumulates these contributions via log-sum-
exp at each node, ensuring that the sink value equals 3sc 5 (1) P(s |
m,a) = P(w | m,a). No path is counted more than once because
distinct paths produce distinct token histories h. O

ProPOSITION 2.3 (BEAM LOWER BOUND). For any beam width
B > 1, the beam-pruned forward algorithm satisfies log Pg(w) <
log P(w | 7, a).

PrROOF. Beam pruning discards partial paths at each node. Each
discarded partial path A has aj, > —oo, so its continuation to the sink
carries positive probability mass. Removing it can only decrease
the total sum at the sink. O

These properties guarantee that our method never overestimates
word probability, and that increasing the beam width monotonically
improves the approximation.

2.7 Relationship to CTC Marginalization

Our forward algorithm is structurally analogous to the CTC forward
algorithm [4], but with important differences:

e CTC operates on a time-aligned lattice where nodes repre-
sent (time step, label) pairs and edges correspond to emit-
ting or repeating labels. The edge weights are frame-level
emission probabilities, which are conditionally independent
given the encoder output.

e Our DAG operates on character positions where edges
correspond to vocabulary tokens spanning character sub-
strings. The edge weights are context-dependent autore-
gressive probabilities, requiring distinct decoder states for
different paths.

The context dependence is the key computational challenge:
CTC’s forward algorithm runs in O(T - L) time (where T is the
sequence length and L is the label set size) because weights are
context-free. Our exact algorithm may require tracking exponen-
tially many contexts, motivating the beam approximation.

2.8 Experimental Setup

We use Whisper’s GPT-2 BPE tokenizer (50,257 vocabulary en-
tries) accessed via the tiktoken library. We construct segmentation
DAGs for 184 English words drawn from four frequency-balanced
groups:
e Short (2-3 characters): 20 words (e.g., “an”, “if”, “we”
e Medium (4-5 characters): 81 words (e.g., “also”, “make”,
“time”)
e Longer (6-7 characters): 58 words (e.g., “believe”, “playing”,
“teacher”)
e Complex (11+ characters): 25 words (e.g., “application”,

“international”, “understanding”)
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Number of valid tokenizations

10!

(a) Tokenization paths vs. word length

(b) DAG edges vs. word length

Single case
All case variants
. Trend: 100760 +011

Number of DAG edges
v w e a @
5 8 5 g2 3

s
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Figure 1: (a) Number of valid BPE tokenization paths versus
word length on alog scale. Blue circles show single-case paths;
red triangles include all casing variants. The exponential
trendline (dashed) shows approximately 10°-3" growth. (b)
DAG edge count versus word length follows a quadratic trend
from the O(n?) substring enumeration.

Since our contribution is the marginalization method and the
characterization of tokenization ambiguity rather than ASR accu-
racy on specific benchmarks, we use a mock decoder that assigns
plausible conditional probabilities based on token length. This de-
sign choice isolates the tokenization structure from model-specific
behavior and ensures full reproducibility without requiring GPU
resources. The mock decoder assigns higher probability to longer
tokens (those produced by more BPE merges), matching the well-
documented behavior of BPE decoders that strongly prefer merged
tokens [12]. Specifically, tokens of length >4 receive conditional
probability 0.70, length-3 tokens receive 0.12, length-2 tokens re-
ceive 0.04, and single-character tokens receive 0.008. These proba-
bilities are not intended to match any specific audio input but rather
to produce realistic relative probability rankings across tokenization
paths.

3 RESULTS
3.1 Tokenization Path Count Analysis

Figure 1(a) shows that the number of valid tokenizations grows
exponentially with word length. The exponential trendline indicates
approximately 10%-35" growth, meaning each additional character
roughly doubles the number of valid tokenizations. This exponential
growth arises because each additional character introduces new
split points, each of which may correspond to valid vocabulary
tokens.

Table 1 provides summary statistics grouped by word length.
Short words (2-3 characters) have uniformly 4 valid tokeniza-
tion paths (the word with space prefix can be split as: one token,
space+word, prefix+suffix, or space+char+char). Medium words
(4-5 characters) jump to a median of 15 paths. The most dramatic
increase occurs for complex words (11+ characters), which have a
median of 3,006 paths with the maximum reaching 5,337 for “un-
derstanding”

The DAG edge count (Figure 1(b)) grows quadratically rather
than exponentially, reflecting the O(n?) substring enumeration.
This is practically significant: even though the number of paths
is exponential, the DAG representation remains compact, enabling
efficient algorithms.

Anon.

Table 1: Summary statistics for segmentation DAGs by word
length group. “Paths” counts source-to-sink paths (valid tok-
enizations). “Edges” counts DAG edges. “Gap” is the median
marginalization gap in nats. “Gap+case” includes all casing
variants. All quantities computed over the full vocabulary of
184 words.

Length N Paths Edges  Gap Gap
Med. Max Med. (single) (+case)
2-3 20 4 4 6 0.005 1.104
4-5 81 15 16 14 0.029 1.118
6-7 58 93 110 26 0.535 1.229
8-10 1 493 493 34 0.226 1.010
11+ 24 3,006 5,337 46 0.859 1.293

(a) Gap vs. word length (b) Gap vs. number of paths

Single case
All case variants

- == Trend (slope=0.338)
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Figure 2: Marginalization gap A(w) (Equation 4) as a func-
tion of (a) word length and (b) number of tokenization paths
(log scale). Blue circles: single-case gap. Red triangles: gap in-
cluding all case variants. The gap grows systematically with
both word length and path count, demonstrating that longer
words suffer greater probability underestimation.

3.2 Marginalization Gap Analysis

Figure 2 presents the central empirical finding: the marginalization
gap—the amount of log-probability mass missed by using only the
canonical tokenization—grows substantially with word length and
tokenization path count.

Single-case gap. Across all 184 words, the single-case marginal-
ization gap ranges from 0.005 nats (short words like “an”) to 1.58
nats (complex words like “significantly”), with an overall mean of
0.26 nats. In probability space, a gap of 0.26 nats means the canon-
ical estimate captures only exp(—0.26) ~ 77% of the true word
probability on average. For complex words with gaps exceeding
1 nat, the canonical estimate captures less than 37% of the true
probability.

Case-inclusive gap. When all casing variants are included (Equa-
tion 5), the mean gap rises to 1.09 nats, corresponding to an average
probability recovery of only exp(—1.09) ~ 34%. This large increase
is driven by the title-case and uppercase variants, which collec-
tively carry significant probability mass. The case-inclusive gap
is relatively constant across word lengths (Table 1: 1.10-1.29 nats
across all groups), suggesting that casing ambiguity is a length-
independent source of probability dispersion.
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(a) Beam convergence by word length (b) Individual word convergence

1.0 1" soe—p=—t—o

Gap from exact (nats)

—o— Short (24)
Medium (5-7)
—e— Long (8+) 0 =

Relative coverage (beam / exact)

0.5

20 30 40 50 0 10 20 30 40 50
Beam width Beam width

Figure 3: (a) Mean relative coverage (beam probability / ex-
act probability) versus beam width, grouped by word length.
Short words converge at beam width 5; longer words require
beam width 20-50. (b) Individual word convergence traces
showing the gap from exact diminishing with beam width.

Table 2: Beam convergence for selected words. Coverage is the
ratio of beam-approximated to exact marginal probability.
Gap is in nats.

Word Paths Coverage (%) at beam width

B=5 B=10 B=20 B=50
cat 8 100.0 100.0 100.0 100.0
playing 80  99.6 99.9 100.0 100.0

application 1,011 943 988 99.8 100.0
international 3,642 87.6 96.0 99.2 99.9

Correlation with path count. Figure 2(b) shows a log-linear re-
lationship between path count and gap. Each order-of-magnitude
increase in the number of tokenization paths adds approximately
0.3 nats to the single-case gap. This relationship provides a practical
rule of thumb: words with >100 tokenization paths likely suffer a
gap exceeding 0.3 nats.

3.3 Beam Search Convergence

Figure 3 demonstrates the convergence properties of beam-pruned
marginalization.

Short and medium words. For words of <5 characters, a beam
width of B = 5 achieves >99.99% relative coverage. This is because
these words have at most 16 paths, all of which fit within the beam.
A beam width of B = 10 achieves effectively exact results.

Longer words. For words of 6-7 characters (up to 110 paths),
beam width B = 10 achieves 99.9% coverage. The convergence
is rapid because the probability distribution over paths is highly
concentrated: the canonical path and its close variants capture the
vast majority of the mass.

Complex words. For complex words with thousands of paths (e.g.,
“international” with 3,642 paths), convergence is slower but still
practical. Table 2 shows detailed convergence for selected words.
Even for “international” beam width B = 10 achieves 96.0% cover-
age, and B = 50 achieves 99.9%.
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(a) Case variant contribution (b) Case variant mass vs. word length

= Lowercase
Other cases

0.2

Fraction of total probability

Fraction from non-lowercase variants

0.0

4 6 8 10 12
Word length (characters)

Figure 4: (a) Fraction of total marginalized probability con-
tributed by lowercase (blue) versus other casing variants (or-
ange) across 24 test words. (b) Non-lowercase fraction versus
word length shows consistent ~50-65% contribution from
case variants, independent of word length.

3.4 Case Variant Contributions

Figure 4 decomposes the marginalized probability into contribu-
tions from different casing variants. In our synthetic setting with
the mock decoder, the lowercase variant accounts for a median of
38% of the total probability, with title-case and uppercase variants
capturing the remaining 62%.

This distribution reflects the mock decoder’s design, which as-
signs similar probabilities to tokens of similar length regardless of
case. In a real Whisper decoder conditioned on specific audio, the
case distribution would depend on context: sentence-initial words,
proper nouns, and acronyms would favor capitalized variants, while
mid-sentence words would strongly favor lowercase. Regardless,
the key insight is that case variants are separate token sequences in
BPE vocabularies, and ignoring them loses a significant portion of
the total word probability.

3.5 Path Probability Distributions

Figure 5 shows the probability distribution across individual tok-
enization paths for four example words. For the word “cat” (8 paths),
the canonical single-token path captures 99.5% of the marginalized
probability. The two-token paths (‘c” + ‘at’ and ‘ca’ + ‘t’)
contribute 0.23% and 0.14% respectively. The remaining five paths
(involving the space as a separate token, or full character-level
decomposition) contribute negligible mass (<0.01% each).

This heavy-tailed distribution is characteristic of BPE decoders:
the canonical path concentrates most mass, but the collective con-
tribution of alternative paths is measurable. The long tail becomes
increasingly important for longer words, where more paths carry
intermediate probabilities.

Practical Implication. The concentration of mass in the top few

paths explains why beam-pruned marginalization converges quickly:

a beam width of B = 10 captures the canonical path plus the most
probable alternatives, which together account for >99% of the total
mass for most words.

3.6 Worked Example: The Word “cat”

To concretize the marginalization process, we trace through the
complete computation for the word “cat” (with space prefix: ¢ cat’,
4 characters).
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Figure 5: Distribution of probability mass across individual
tokenization paths for four example words (single case only).
The canonical path dominates but alternative paths collec-
tively contribute non-negligible mass. Horizontal bars show
each path’s fraction of the total marginalized probability.
Paths are ordered by decreasing probability.

Step 1: DAG Construction. The segmentation DAG for ¢ cat’
has nodes {0, 1, 2, 3, 4} (since n = 4 including the space prefix). Valid
edges include:

(0,4,3797): ¢ cat’ as a single token
(0,2,269): ¢ ¢’ spanning positions 0-2
(0,3,1275): ¢ ca’ spanning positions 0-3
(0,1,220): * ’ (just the space)
(1,4,9246): ‘cat’ spanning positions 1-4
(1,3,6888): ‘ca’ spanning positions 1-3
(2,4,265): ‘at’ spanning positions 2—4
Additional single-character edges

This DAG has 8 source-to-sink paths (valid tokenizations).

Step 2: Path Enumeration and Scoring. Table 3 shows all 8 paths
with their mock-decoder probabilities. The canonical path (‘ cat’
as one token) dominates at 99.5% of total mass, but the remaining 7
paths contribute a collective 0.5%.

Step 3: Marginalization. The exact marginalized log-probability
is logsumexp(—0.357, —6.448, ...) = —0.352, yielding a gap of A =
—0.352 — (—0.357) = 0.005 nats. This small gap confirms that for
short words, the canonical estimate is nearly exact. However, with
casing variants (‘ Cat’, ¢ CAT’), each contributing their own
8 paths, the total gap increases to 1.10 nats—a 220-fold increase
demonstrating the significance of case marginalization.

3.7 Computational Cost Analysis

The computational cost of marginalization is dominated by decoder
queries. For exact marginalization, the number of queries equals
2 (h,i) lout(i)], summed over all (history, position) pairs. For the

Anon.

Table 3: All 8 valid tokenization paths for the word ¢ cat’
with their log-probabilities and fraction of the total marginal-
ized probability. The canonical single-token path captures
99.5% of the mass.

Token sequence log P Fraction
¢ cat’ —0.357 99.50%
‘¢’ + ‘at’ —6.448 0.23%
¢+ ‘cat’ —6.959 0.14%
‘ca + ‘v —6.959 0.14%
¢+ fca’ vt —12.906 <0.01%
fc’+ fal vt —12.906 <0.01%
0+ ‘e’ + fat? —12.906 <0.01%
0+ e’ + fat + 't —-19.373 <0.01%

beam-pruned variant, this reduces to B - }}; |out(i)| = B - |E| in the
worst case.

With the GPT-2 tokenizer, median edge counts are 6 (short words)
to 46 (complex words). At beam width B = 10, the maximum number
of decoder queries per word is 10 X 46 = 460, which is modest
compared to the cost of a full Whisper decoding pass. In practice,
decoder queries for marginalization can be batched across edges
at each position, and the encoder output (the expensive part of
Whisper inference) is computed only once and reused.

4 DISCUSSION
4.1 Implications for Selective Prediction

Systems like Pisets [2] use word-level uncertainty to decide whether
to trust individual transcribed words, abstaining from outputting
low-confidence words. Our analysis reveals that canonical-only
probability estimates introduce a length-dependent bias: long words
systematically appear less confident than short words, even when
the model is equally certain about both.

Consider two words with the same true probability P(w | a) =
0.95. If the short word has 4 tokenization paths and the long word
has 3,000 paths, the canonical estimate might yield 0.94 for the short
word but only 0.40 for the long word, because more probability mass
is dispersed across alternative tokenizations. A confidence threshold
of 0.80 would correctly retain the short word but incorrectly reject
the long word.

Marginalized probabilities correct this bias, making the confi-
dence threshold equally applicable across word lengths. This has
practical implications for dictation systems, where rejection of cor-
rectly transcribed long words (e.g., medical terms, proper nouns)
forces unnecessary user corrections.

4.2 Interaction with Real Decoders

Our experiments use a mock decoder with length-based conditional
probabilities. With a real Whisper decoder conditioned on specific
audio, two effects would modify the results:

First, audio conditioning would sharpen the probability distri-
bution toward the acoustically supported tokenization. If the audio
clearly indicates “cat,” the decoder would assign high probability to
the canonical token ¢ cat’ and low probability to alternatives like
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¢ Cat’ or * ¢’ + ‘at’. This would reduce the marginalization
gap compared to our mock decoder results, which represent an
upper-bound scenario.

Second, context-dependent probabilities would create het-
erogeneous gap profiles across an utterance. Sentence-initial words
(where capitalization is ambiguous) would have larger case-variant
gaps. Rare or domain-specific words (less concentrated in the de-
coder’s probability distribution) might have larger subword-split
gaps.

The DAG structure and forward algorithm are independent of
the probability source and apply unchanged to any autoregressive
decoder. Our results characterize the structural tokenization ambi-
guity that exists regardless of the decoder, establishing that the gap
is non-negligible for typical English words.

4.3 Extension to Multilingual Settings

Whisper supports 99 languages with a single multilingual BPE tok-
enizer [11]. The tokenization ambiguity problem is likely amplified
for:

o Agglutinative languages (Turkish, Finnish, Hungarian):
Long compound words with many morpheme boundaries
create additional split points in the BPE vocabulary.

e Morphologically rich languages (Arabic, Russian): In-
flected forms may have different tokenization structures
from their base forms.

e CJK languages: While typically tokenized at the charac-
ter or subcharacter level, the interaction between Unicode
codepoints and BPE merges creates complex tokenization
DAGs.

A systematic cross-linguistic study of tokenization ambiguity
would be valuable future work.

4.4 Adaptive Gating Strategy

Not all words need full marginalization. Our upper-lower bound
analysis (Section 2.5) suggests a practical two-stage strategy:

(1) Stage 1: Screening. For each transcribed word, compute
the canonical probability (available at no additional cost
from normal decoding) and estimate the upper bound using
one additional decoder forward pass. If the bound gap is
below a threshold 7 (e.g., r = 0.1 nats), accept the canonical
probability.

(2) Stage 2: Marginalization. For words exceeding the thresh-
old, run the beam-pruned forward algorithm with width
B =10.

Based on our data, approximately 55% of words (those of length
<5) have single-case gaps below 0.05 nats and would be screened
out in Stage 1. This reduces the computational overhead to roughly
half the vocabulary, with the remaining words processed efficiently
by the beam algorithm.

4.5 Limitations
Our study has several limitations that should be considered when
interpreting the results:

Mock Decoder. The synthetic conditional probabilities do not
reflect the sharpness of real audio-conditioned distributions. Real
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Whisper decoders would likely produce smaller marginalization
gaps for acoustically clear utterances, because audio conditioning
concentrates probability on the correct tokenization. Our results
should be interpreted as characterizing the structural tokenization
ambiguity rather than the exact magnitude of probability underes-
timation in deployed systems.

English-Only Analysis. We analyze only English words. The to-
kenization properties of other languages—particularly those with
different morphological structures—may differ substantially from
English.

Word Boundary Assumption. We assume that word boundaries
in the decoded token sequence are known. In practice, identifying
word boundaries from BPE tokens requires heuristics (e.g., detecting
space-prefixed tokens), which may introduce errors.

Independence Assumption. Our analysis treats each word inde-
pendently, conditioning on a fixed prefix. In reality, the marginal-
ization of one word affects the prefix distribution for subsequent
words, creating a cascading effect that we do not model.

5 CONCLUSION

We have formalized and addressed the open problem of computing
word-level probabilities that correctly marginalize over all valid BPE
tokenizations in Whisper and similar autoregressive models. Our
segmentation DAG construction provides a compact representation
of the exponentially many valid tokenizations, and our forward
algorithm computes the exact marginal probability through efficient
dynamic programming.
Our empirical analysis of 184 English words reveals that:

(1) Valid tokenization paths grow exponentially with word
length (median: 4 for 2-3 character words to 3,006 for
11+ character words), creating a fundamental challenge
for single-tokenization probability estimation.

(2) The marginalization gap averages 0.26 nats (single-case)
and 1.09 nats (with case variants), meaning canonical esti-
mates capture as little as 34% of the true word probability.

(3) Beam-pruned marginalization with width B = 10 recovers
>99.9% of exact probability for words up to 7 characters and
>96% for words up to 13 characters, providing a practical
approximation.

These results demonstrate that tokenization ambiguity is a sig-
nificant and quantifiable source of probability underestimation
in BPE-based models. Our marginalization framework provides
the principled correction called for by Bondarenko et al. [2], en-
abling calibrated word-level uncertainty estimates for downstream
tasks including selective prediction, confidence-based filtering, and
uncertainty-aware speech recognition.
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