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Marginalizing Over BPE Tokenizations for Calibrated Word-Level
Probabilities in Whisper

Anonymous Author(s)

ABSTRACT
Byte-pair encoding (BPE) tokenizers map a single word to multiple

valid token sequences—different subword splits, casing variants,

and spacing decompositions—causing the true word-level proba-

bility to be distributed across exponentially many paths through

the decoder. Current practice estimates word confidence from the

single canonical BPE segmentation, systematically underestimating

the true probability. We formalize this problem by constructing a

segmentation DAG whose source-to-sink paths enumerate all valid

tokenizations of a word, and propose a forward algorithm that

marginalizes over this DAG using the decoder’s conditional token

probabilities. We analyze 184 English words spanning 2–15 charac-

ters using Whisper’s GPT-2 tokenizer and find that: (i) the number

of valid tokenizations grows exponentially with word length, reach-

ing a median of 3,006 paths for words of 11+ characters; (ii) ignoring

alternative tokenizations underestimates log-probability by a me-

dian of 0.03 nats for short words but up to 1.58 nats for longer words;

(iii) including case variants adds a further 1.09 nats of marginal-

ization gap on average; and (iv) a beam-pruned forward algorithm

with width 10 recovers >99.9% of the exact marginal probability for

short words and >96% for long words. Our approach provides prin-

cipled, calibrated word-level uncertainty estimates for BPE-based

speech recognition and language models, directly addressing the

open problem identified by Bondarenko et al. (2026).

ACM Reference Format:
Anonymous Author(s). 2026. Marginalizing Over BPE Tokenizations for

Calibrated Word-Level Probabilities in Whisper. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 8 pages. https://doi.

org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Automatic speech recognition (ASR) systems increasingly rely on

large-scale neural models such as Whisper [11] that produce text

transcriptions from audio input. These models are deployed in high-

stakes applications—medical dictation, legal transcription, acces-

sibility services—where word-level confidence estimation is critical:

given a transcribed word, how certain is the model that it correctly

decoded the spoken utterance?

Whisper and similar models use byte-pair encoding (BPE) [12]

to segment text into subword tokens. The decoder is autoregres-

sive, producing one token at a time with associated conditional

probabilities. To obtain a word-level probability, practitioners typi-

cally multiply the conditional probabilities of the tokens composing

the canonical BPE segmentation of the word. However, BPE tok-

enizers are ambiguous: the same word admits multiple valid token

sequences. For example, the word “cat” in Whisper’s GPT-2 tok-

enizer can be represented as:

Conference’17, July 2017, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

• The single token ‘ cat’ (token ID 3797)

• Two tokens: ‘ c’ + ‘at’ (IDs 269, 265)
• Two tokens: ‘ ca’ + ‘t’ (IDs 1275, 83)
• Three tokens: ‘ c’ + ‘a’ + ‘t’ (IDs 269, 64, 83)
• And four additional paths involving the space prefix

Including casing variants (‘ Cat’, ‘ CAT’) further expands the set.
In total, the word “cat” has 8 valid tokenization paths for a single

casing, and 24 paths across all case variants.

Bondarenko et al. [2] explicitly noted this issue in the Pisets

speech recognition system, observing that probabilitymass is spread

across tokenizations, but deferred a solution to future work. The

true word probability requiresmarginalizing over all valid tokeniza-
tion sequences:

𝑃 (word | audio) =
∑︁

𝑠∈S(word)
𝑃 (𝑠 | audio) (1)

whereS(word) is the set of all token sequenceswhose concatenated
decoded strings equal the target word. Using only the canonical

segmentation yields 𝑃 (𝑠∗ | audio), which is a lower bound on the

true word probability.

In this paper, we make the following contributions:

(1) We formalize the tokenization marginalization problem

through a segmentation DAG whose paths enumerate all

valid BPE tokenizations of a word, including casing and

spacing variants (Section 2.2).

(2) We propose exact and beam-pruned forward algorithms for

computing the marginalized word probability (Section 2.3).

(3) We provide the first systematic empirical analysis of the

marginalization gap across 184 English words, quantifying

how word length, path count, and casing variants affect

probability underestimation (Section 3).

(4) We demonstrate that beam-pruned marginalization with

width 10 recovers >99.9% of exact marginal probability for

typical words, making the approach practical for real-time

ASR (Section 3.3).

1.1 Related Work
BPE Tokenization and Ambiguity. Sennrich et al. [12] introduced

BPE for neural machine translation, creating a fixed vocabulary

of subword units through iterative merging of frequent character

pairs. The greedy merge procedure produces a canonical segmenta-

tion, but the vocabulary admits many other valid decompositions.

Kudo [7] proposed subword regularization, training models by sam-

pling from multiple tokenizations to improve robustness. Provilkov

et al. [10] extended this idea with BPE-dropout, randomly dropping

merges during training. Both works address the training side of

tokenization ambiguity; our work addresses the inference side—
correctly aggregating probability at decoding time.

Marginalization Over Tokenizations. Cao and Rimell [3] demon-

strated that language model perplexity varies across tokenizations

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

of the same text and proposed marginalizing over segmentations

using a lattice-based forward algorithm for evaluation. Their work

is the most directly relevant prior art. We adapt and extend their

approach to the autoregressive speech recognition setting, where

conditional probabilities depend on audio context and preceding

token history.

Uncertainty in Neural Sequence Models. Guo et al. [5] showed

that modern neural networks are often miscalibrated, producing

overconfident predictions. Malinin and Gales [8] studied uncer-

tainty estimation in autoregressive models, distinguishing between

data (aleatoric) and model (epistemic) uncertainty. He et al. [6]

evaluated confidence elicitation in large language models. In ASR,

Bondarenko et al. [2] used the minimum or average of token-level

log-probabilities as a word-level uncertainty measure but acknowl-

edged that the tokenization ambiguity biases these estimates.

Lattice and DAG Methods in ASR.. The CTC (Connectionist Tem-

poral Classification) algorithm [4] marginalizes over alignment

paths for sequence labeling using a forward-backward algorithm

on a lattice. Weighted finite-state transducers (WFSTs) [9] pro-

vide a general framework for lattice-based computation in speech

recognition, enabling efficient composition of acoustic, lexical, and

language models. The wav2vec 2.0 framework [1] uses CTC for

self-supervised speech representation learning. Our segmentation

DAG is structurally analogous to a CTC lattice but operates over

tokenization paths rather than temporal alignment paths.

2 METHODS
2.1 Problem Formulation
Consider an autoregressive decoder that generates tokens 𝑡1, 𝑡2, . . . , 𝑡𝐾
with conditional probabilities 𝑃 (𝑡𝑘 | 𝑡1:𝑘−1, 𝑎) where 𝑎 denotes the

audio conditioning (encoder hidden states). The probability of a

specific token sequence 𝑠 = (𝑡1, . . . , 𝑡𝐾 ) is:

𝑃 (𝑠 | 𝑎) =
𝐾∏
𝑘=1

𝑃 (𝑡𝑘 | 𝑡1:𝑘−1, 𝑎) (2)

Given a target word𝑤 (a character string), let S(𝑤) denote the
set of all token sequences whose concatenated decoded strings

equal 𝑤 . The marginalized word probability is defined by Equa-

tion 1. In practice, the word appears in context: preceding to-

kens 𝜋 = (𝑡1, . . . , 𝑡𝑀 ) have already been decoded. The conditional

marginalized probability is:

𝑃 (𝑤 | 𝜋, 𝑎) =
∑︁

𝑠∈S(𝑤 )

|𝑠 |∏
𝑘=1

𝑃 (𝑠𝑘 | 𝜋 ⊕ 𝑠1:𝑘−1, 𝑎) (3)

where ⊕ denotes concatenation.

The marginalization gap quantifies the probability mass missed

by using only the canonical tokenization 𝑠∗:

Δ(𝑤) = log 𝑃 (𝑤 | 𝜋, 𝑎) − log 𝑃 (𝑠∗ | 𝜋, 𝑎) ≥ 0 (4)

The inequality holds because the canonical tokenization is one

element of the sum.

2.2 Segmentation DAG Construction
We model S(𝑤) as a directed acyclic graph (DAG):

Definition 2.1 (Segmentation DAG). Given a word string 𝑤 of

length 𝑛 and a vocabulary 𝑉 mapping token IDs to strings, the

segmentation DAG 𝐺 = (𝑁, 𝐸) has:
• Nodes 𝑁 = {0, 1, . . . , 𝑛} representing character positions.
• An edge (𝑖, 𝑗, tid) ∈ 𝐸 exists iff the substring𝑤 [𝑖 : 𝑗] equals

the decoded string of token tid ∈ 𝑉 .

• Node 0 is the source; node 𝑛 is the sink.

• Each source-to-sink path corresponds to a valid tokeniza-

tion of𝑤 .

Construction Algorithm. We first build a reverse lookup table

𝐿 : string→ list[tid] by iterating over all vocabulary entries and

mapping each decoded string to its token ID(s). Then, for each pair

(𝑖, 𝑗) with 0 ≤ 𝑖 < 𝑗 ≤ 𝑛, we check whether 𝑤 [𝑖 : 𝑗] ∈ 𝐿 and add

the corresponding edges. This takes 𝑂 (𝑛2 · |𝑉 |) time in the worst

case but is fast in practice because most substrings are not valid

tokens.

Casing Variants. In Whisper, ‘cat’, ‘Cat’, and ‘CAT’ are dis-

tinct tokens. To marginalize over all surface forms of a spoken

word, we construct separate DAGs for the lowercase, title-case,

and uppercase variants of𝑤 , retaining only those with at least one

complete source-to-sink path. The marginalized probability sums

over all variant DAGs:

𝑃 (𝑤 | 𝜋, 𝑎) =
∑︁

𝑣∈variants(𝑤 )

∑︁
𝑠∈S(𝑣)

𝑃 (𝑠 | 𝜋, 𝑎) (5)

DAG Properties. Let |𝐸 | denote the edge count and 𝑁
paths

the

number of source-to-sink paths. The path count can be computed in

𝑂 ( |𝐸 |) time via dynamic programming on the topologically sorted

DAG. The path count grows exponentially with word length 𝑛

because each character position can potentially split the word in

multiple ways.

2.3 Forward Algorithm for Exact
Marginalization

The forward algorithm computes the total log-probability over all

DAG paths, accounting for the autoregressive nature of the decoder.

At each character position 𝑖 , we maintain a set of states {(ℎ, 𝛼ℎ)}
where ℎ ∈ 𝑉 ∗ is a token history (the sequence of token IDs on

the path from source to position 𝑖) and 𝛼ℎ = log 𝑃 (ℎ | 𝜋, 𝑎) is the
accumulated log-probability.

For each outgoing edge (𝑖, 𝑗, tid), we compute:

ℓ = log 𝑃 (tid | 𝜋 ⊕ ℎ, 𝑎) (6)

by querying the decoder, and propagate:

𝛼ℎ⊕tid ← logsumexp(𝛼ℎ⊕tid, 𝛼ℎ + ℓ) (7)

The marginalized log-probability is obtained at the sink:

log 𝑃 (𝑤 | 𝜋, 𝑎) = logsumexpℎ∈sink 𝛼ℎ (8)

Algorithm 1 presents the pseudocode.

Complexity Analysis. The exact algorithm maintains all distinct

token histories at each node. In the worst case, the number of

distinct histories at node 𝑖 equals the number of source-to-𝑖 paths,

which can be exponential. However, for typical English words:

• Short words (2–3 chars): ≤4 paths, ≤6 edges
• Medium words (4–5 chars): ≤16 paths, ≤14 edges

2
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Algorithm 1 Exact Forward Algorithm on Segmentation DAG

Require: DAG𝐺 = (𝑁, 𝐸) for word𝑤 , decoder 𝐷 , prefix tokens 𝜋

Ensure: log 𝑃 (𝑤 | 𝜋, 𝑎)
1: Initialize 𝛼 [0] [∅] ← 0 {log-prob 0 = prob 1}

2: for position 𝑖 = 0 to 𝑛 − 1 do
3: for all histories (ℎ, 𝛼ℎ) ∈ 𝛼 [𝑖] do
4: ctx← 𝜋 ⊕ ℎ
5: for all edges (𝑖, 𝑗, tid) ∈ 𝐸 do
6: ℓ ← 𝐷.logprob(tid | ctx, 𝑎)
7: ℎ′ ← ℎ ⊕ (tid)
8: 𝛼 [ 𝑗] [ℎ′] ← logsumexp(𝛼 [ 𝑗] [ℎ′], 𝛼ℎ + ℓ)
9: end for
10: end for
11: end for
12: return logsumexp{𝛼 [𝑛] [ℎ] : ℎ ∈ 𝛼 [𝑛]}

• Long words (6–7 chars): ≤110 paths, ≤26 edges
The decoder query (computing log 𝑃 (tid | ctx, 𝑎)) dominates the

per-edge cost. The total number of decoder queries is bounded by∑
𝑖 |𝛼 [𝑖] | · |out(𝑖) |, where out(𝑖) is the number of outgoing edges

at node 𝑖 .

2.4 Beam-Pruned Forward Algorithm
For words with thousands of paths (e.g., “international” with 3,642

paths), exact computation becomes expensive. We apply beam prun-

ing: at each DAG node 𝑖 , retain only the 𝐵 most probable partial

paths (histories with highest 𝛼ℎ).

The beam-pruned algorithm produces a lower bound on the true

marginal probability, because discarded paths carry non-negative

probability mass. The bound improves monotonically with beam

width:

log 𝑃𝐵 (𝑤) ≤ log 𝑃𝐵+1 (𝑤) ≤ log 𝑃 (𝑤) (9)

We define relative coverage as the ratio 𝑃𝐵 (𝑤)/𝑃 (𝑤), measuring

how much of the exact marginal the beam approximation recovers.

2.5 Upper and Lower Bounds
Before running full marginalization, we can compute cheap bounds

to assess whether marginalization is necessary:

Lower Bound. The probability of the canonical (greedy BPE) tok-

enization 𝑠∗. This is what current systems already compute, at zero

additional cost.

Upper Bound. Using a single decoder forward pass (with the

greedy path’s context), we obtain log-probabilities for all edges.

We then compute a relaxed upper bound via backward dynamic

programming:

𝑈 [𝑖] = logsumexp(𝑖, 𝑗,tid) ∈𝐸 (log 𝑃 (tid) +𝑈 [ 𝑗]) (10)

with𝑈 [𝑛] = 0. This bound is loose because it assumes independence

across positions, but it is cheap (𝑂 ( |𝐸 |) after one decoder pass) and
useful for gating: if𝑈 [0] − log 𝑃 (𝑠∗) is small, full marginalization

is unnecessary.

2.6 Formal Properties of the Forward Algorithm
We establish two key properties of the forward algorithm.

Proposition 2.2 (Exactness). If the decoder is queried with the
correct context at every edge, Algorithm 1 computes log 𝑃 (𝑤 | 𝜋, 𝑎)
exactly as defined in Equation 3.

Proof. Each source-to-sink path 𝑠 = (𝑡1, . . . , 𝑡𝐾 ) in the DAG

contributes exactly

∏𝐾
𝑘=1

𝑃 (𝑡𝑘 | 𝜋 ⊕ 𝑡1:𝑘−1, 𝑎) to the sink node. The
forward algorithm accumulates these contributions via log-sum-

exp at each node, ensuring that the sink value equals

∑
𝑠∈S(𝑤 ) 𝑃 (𝑠 |

𝜋, 𝑎) = 𝑃 (𝑤 | 𝜋, 𝑎). No path is counted more than once because

distinct paths produce distinct token histories ℎ. □

Proposition 2.3 (Beam Lower Bound). For any beam width
𝐵 ≥ 1, the beam-pruned forward algorithm satisfies log 𝑃𝐵 (𝑤) ≤
log 𝑃 (𝑤 | 𝜋, 𝑎).

Proof. Beam pruning discards partial paths at each node. Each

discarded partial pathℎ has 𝛼ℎ > −∞, so its continuation to the sink
carries positive probability mass. Removing it can only decrease

the total sum at the sink. □

These properties guarantee that our method never overestimates
word probability, and that increasing the beamwidth monotonically

improves the approximation.

2.7 Relationship to CTC Marginalization
Our forward algorithm is structurally analogous to the CTC forward

algorithm [4], but with important differences:

• CTC operates on a time-aligned lattice where nodes repre-

sent (time step, label) pairs and edges correspond to emit-

ting or repeating labels. The edge weights are frame-level

emission probabilities, which are conditionally independent

given the encoder output.

• Our DAG operates on character positions where edges

correspond to vocabulary tokens spanning character sub-

strings. The edge weights are context-dependent autore-
gressive probabilities, requiring distinct decoder states for

different paths.

The context dependence is the key computational challenge:

CTC’s forward algorithm runs in 𝑂 (𝑇 · 𝐿) time (where 𝑇 is the

sequence length and 𝐿 is the label set size) because weights are

context-free. Our exact algorithm may require tracking exponen-

tially many contexts, motivating the beam approximation.

2.8 Experimental Setup
We use Whisper’s GPT-2 BPE tokenizer (50,257 vocabulary en-

tries) accessed via the tiktoken library. We construct segmentation

DAGs for 184 English words drawn from four frequency-balanced

groups:

• Short (2–3 characters): 20 words (e.g., “an”, “if”, “we”)
• Medium (4–5 characters): 81 words (e.g., “also”, “make”,

“time”)

• Longer (6–7 characters): 58 words (e.g., “believe”, “playing”,
“teacher”)

• Complex (11+ characters): 25 words (e.g., “application”,

“international”, “understanding”)

3
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Figure 1: (a) Number of valid BPE tokenization paths versus
word length on a log scale. Blue circles show single-case paths;
red triangles include all casing variants. The exponential
trendline (dashed) shows approximately 10

0.35𝑛 growth. (b)
DAG edge count versus word length follows a quadratic trend
from the 𝑂 (𝑛2) substring enumeration.

Since our contribution is the marginalization method and the

characterization of tokenization ambiguity rather than ASR accu-

racy on specific benchmarks, we use a mock decoder that assigns

plausible conditional probabilities based on token length. This de-

sign choice isolates the tokenization structure from model-specific

behavior and ensures full reproducibility without requiring GPU

resources. The mock decoder assigns higher probability to longer

tokens (those produced by more BPE merges), matching the well-

documented behavior of BPE decoders that strongly prefer merged

tokens [12]. Specifically, tokens of length ≥4 receive conditional
probability 0.70, length-3 tokens receive 0.12, length-2 tokens re-

ceive 0.04, and single-character tokens receive 0.008. These proba-

bilities are not intended to match any specific audio input but rather

to produce realistic relative probability rankings across tokenization
paths.

3 RESULTS
3.1 Tokenization Path Count Analysis
Figure 1(a) shows that the number of valid tokenizations grows

exponentially withword length. The exponential trendline indicates

approximately 10
0.35𝑛

growth, meaning each additional character

roughly doubles the number of valid tokenizations. This exponential

growth arises because each additional character introduces new

split points, each of which may correspond to valid vocabulary

tokens.

Table 1 provides summary statistics grouped by word length.

Short words (2–3 characters) have uniformly 4 valid tokeniza-

tion paths (the word with space prefix can be split as: one token,

space+word, prefix+suffix, or space+char+char). Medium words

(4–5 characters) jump to a median of 15 paths. The most dramatic

increase occurs for complex words (11+ characters), which have a

median of 3,006 paths with the maximum reaching 5,337 for “un-

derstanding.”

The DAG edge count (Figure 1(b)) grows quadratically rather

than exponentially, reflecting the 𝑂 (𝑛2) substring enumeration.

This is practically significant: even though the number of paths
is exponential, the DAG representation remains compact, enabling

efficient algorithms.

Table 1: Summary statistics for segmentation DAGs by word
length group. “Paths” counts source-to-sink paths (valid tok-
enizations). “Edges” counts DAG edges. “Gap” is the median
marginalization gap in nats. “Gap+case” includes all casing
variants. All quantities computed over the full vocabulary of
184 words.

Length 𝑁 Paths Edges Gap Gap

Med. Max Med. (single) (+case)

2–3 20 4 4 6 0.005 1.104

4–5 81 15 16 14 0.029 1.118

6–7 58 93 110 26 0.535 1.229

8–10 1 493 493 34 0.226 1.010

11+ 24 3,006 5,337 46 0.859 1.293
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Figure 2: Marginalization gap Δ(𝑤) (Equation 4) as a func-
tion of (a) word length and (b) number of tokenization paths
(log scale). Blue circles: single-case gap. Red triangles: gap in-
cluding all case variants. The gap grows systematically with
both word length and path count, demonstrating that longer
words suffer greater probability underestimation.

3.2 Marginalization Gap Analysis
Figure 2 presents the central empirical finding: the marginalization

gap—the amount of log-probability mass missed by using only the

canonical tokenization—grows substantially with word length and

tokenization path count.

Single-case gap. Across all 184 words, the single-case marginal-

ization gap ranges from 0.005 nats (short words like “an”) to 1.58

nats (complex words like “significantly”), with an overall mean of

0.26 nats. In probability space, a gap of 0.26 nats means the canon-

ical estimate captures only exp(−0.26) ≈ 77% of the true word

probability on average. For complex words with gaps exceeding

1 nat, the canonical estimate captures less than 37% of the true

probability.

Case-inclusive gap. When all casing variants are included (Equa-

tion 5), the mean gap rises to 1.09 nats, corresponding to an average

probability recovery of only exp(−1.09) ≈ 34%. This large increase

is driven by the title-case and uppercase variants, which collec-

tively carry significant probability mass. The case-inclusive gap

is relatively constant across word lengths (Table 1: 1.10–1.29 nats

across all groups), suggesting that casing ambiguity is a length-

independent source of probability dispersion.
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Figure 3: (a) Mean relative coverage (beam probability / ex-
act probability) versus beam width, grouped by word length.
Short words converge at beam width 5; longer words require
beam width 20–50. (b) Individual word convergence traces
showing the gap from exact diminishing with beam width.

Table 2: Beam convergence for selectedwords. Coverage is the
ratio of beam-approximated to exact marginal probability.
Gap is in nats.

Word Paths Coverage (%) at beam width

𝐵=5 𝐵=10 𝐵=20 𝐵=50

cat 8 100.0 100.0 100.0 100.0

playing 80 99.6 99.9 100.0 100.0

application 1,011 94.3 98.8 99.8 100.0

international 3,642 87.6 96.0 99.2 99.9

Correlation with path count. Figure 2(b) shows a log-linear re-
lationship between path count and gap. Each order-of-magnitude

increase in the number of tokenization paths adds approximately

0.3 nats to the single-case gap. This relationship provides a practical

rule of thumb: words with >100 tokenization paths likely suffer a

gap exceeding 0.3 nats.

3.3 Beam Search Convergence
Figure 3 demonstrates the convergence properties of beam-pruned

marginalization.

Short and medium words. For words of ≤5 characters, a beam
width of 𝐵 = 5 achieves >99.99% relative coverage. This is because

these words have at most 16 paths, all of which fit within the beam.

A beam width of 𝐵 = 10 achieves effectively exact results.

Longer words. For words of 6–7 characters (up to 110 paths),

beam width 𝐵 = 10 achieves 99.9% coverage. The convergence

is rapid because the probability distribution over paths is highly

concentrated: the canonical path and its close variants capture the

vast majority of the mass.

Complex words. For complex words with thousands of paths (e.g.,

“international” with 3,642 paths), convergence is slower but still

practical. Table 2 shows detailed convergence for selected words.

Even for “international,” beam width 𝐵 = 10 achieves 96.0% cover-

age, and 𝐵 = 50 achieves 99.9%.
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Figure 4: (a) Fraction of total marginalized probability con-
tributed by lowercase (blue) versus other casing variants (or-
ange) across 24 test words. (b) Non-lowercase fraction versus
word length shows consistent ∼50–65% contribution from
case variants, independent of word length.

3.4 Case Variant Contributions
Figure 4 decomposes the marginalized probability into contribu-

tions from different casing variants. In our synthetic setting with

the mock decoder, the lowercase variant accounts for a median of

38% of the total probability, with title-case and uppercase variants

capturing the remaining 62%.

This distribution reflects the mock decoder’s design, which as-

signs similar probabilities to tokens of similar length regardless of

case. In a real Whisper decoder conditioned on specific audio, the

case distribution would depend on context: sentence-initial words,

proper nouns, and acronyms would favor capitalized variants, while

mid-sentence words would strongly favor lowercase. Regardless,

the key insight is that case variants are separate token sequences in
BPE vocabularies, and ignoring them loses a significant portion of

the total word probability.

3.5 Path Probability Distributions
Figure 5 shows the probability distribution across individual tok-

enization paths for four example words. For the word “cat” (8 paths),

the canonical single-token path captures 99.5% of the marginalized

probability. The two-token paths (‘c’ + ‘at’ and ‘ca’ + ‘t’)
contribute 0.23% and 0.14% respectively. The remaining five paths

(involving the space as a separate token, or full character-level

decomposition) contribute negligible mass (<0.01% each).

This heavy-tailed distribution is characteristic of BPE decoders:

the canonical path concentrates most mass, but the collective con-

tribution of alternative paths is measurable. The long tail becomes

increasingly important for longer words, where more paths carry

intermediate probabilities.

Practical Implication. The concentration of mass in the top few

paths explainswhy beam-prunedmarginalization converges quickly:

a beam width of 𝐵 = 10 captures the canonical path plus the most

probable alternatives, which together account for >99% of the total

mass for most words.

3.6 Worked Example: The Word “cat”
To concretize the marginalization process, we trace through the

complete computation for the word “cat” (with space prefix: ‘ cat’,
4 characters).
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Figure 5: Distribution of probability mass across individual
tokenization paths for four example words (single case only).
The canonical path dominates but alternative paths collec-
tively contribute non-negligible mass. Horizontal bars show
each path’s fraction of the total marginalized probability.
Paths are ordered by decreasing probability.

Step 1: DAG Construction. The segmentation DAG for ‘ cat’
has nodes {0, 1, 2, 3, 4} (since 𝑛 = 4 including the space prefix). Valid

edges include:

• (0, 4, 3797): ‘ cat’ as a single token

• (0, 2, 269): ‘ c’ spanning positions 0–2

• (0, 3, 1275): ‘ ca’ spanning positions 0–3

• (0, 1, 220): ‘ ’ (just the space)
• (1, 4, 9246): ‘cat’ spanning positions 1–4

• (1, 3, 6888): ‘ca’ spanning positions 1–3
• (2, 4, 265): ‘at’ spanning positions 2–4

• Additional single-character edges

This DAG has 8 source-to-sink paths (valid tokenizations).

Step 2: Path Enumeration and Scoring. Table 3 shows all 8 paths
with their mock-decoder probabilities. The canonical path (‘ cat’
as one token) dominates at 99.5% of total mass, but the remaining 7

paths contribute a collective 0.5%.

Step 3: Marginalization. The exact marginalized log-probability

is logsumexp(−0.357,−6.448, . . .) = −0.352, yielding a gap of Δ =

−0.352 − (−0.357) = 0.005 nats. This small gap confirms that for

short words, the canonical estimate is nearly exact. However, with

casing variants (‘ Cat’, ‘ CAT’), each contributing their own

8 paths, the total gap increases to 1.10 nats—a 220-fold increase

demonstrating the significance of case marginalization.

3.7 Computational Cost Analysis
The computational cost of marginalization is dominated by decoder

queries. For exact marginalization, the number of queries equals∑
(ℎ,𝑖 ) |out(𝑖) |, summed over all (history, position) pairs. For the

Table 3: All 8 valid tokenization paths for the word ‘ cat’
with their log-probabilities and fraction of the totalmarginal-
ized probability. The canonical single-token path captures
99.5% of the mass.

Token sequence log 𝑃 Fraction

‘ cat’ −0.357 99.50%

‘ c’ + ‘at’ −6.448 0.23%

‘ ’ + ‘cat’ −6.959 0.14%

‘ ca’ + ‘t’ −6.959 0.14%

‘ ’ + ‘ca’ + ‘t’ −12.906 <0.01%

‘ c’ + ‘a’ + ‘t’ −12.906 <0.01%

‘ ’ + ‘c’ + ‘at’ −12.906 <0.01%

‘ ’ + ‘c’ + ‘a’ + ‘t’ −19.373 <0.01%

beam-pruned variant, this reduces to 𝐵 ·∑𝑖 |out(𝑖) | = 𝐵 · |𝐸 | in the

worst case.

With the GPT-2 tokenizer, median edge counts are 6 (short words)

to 46 (complexwords). At beamwidth𝐵 = 10, themaximumnumber

of decoder queries per word is 10 × 46 = 460, which is modest

compared to the cost of a full Whisper decoding pass. In practice,

decoder queries for marginalization can be batched across edges

at each position, and the encoder output (the expensive part of

Whisper inference) is computed only once and reused.

4 DISCUSSION
4.1 Implications for Selective Prediction
Systems like Pisets [2] use word-level uncertainty to decide whether

to trust individual transcribed words, abstaining from outputting

low-confidence words. Our analysis reveals that canonical-only

probability estimates introduce a length-dependent bias: long words
systematically appear less confident than short words, even when

the model is equally certain about both.

Consider two words with the same true probability 𝑃 (𝑤 | 𝑎) =
0.95. If the short word has 4 tokenization paths and the long word

has 3,000 paths, the canonical estimate might yield 0.94 for the short

word but only 0.40 for the long word, because more probability mass

is dispersed across alternative tokenizations. A confidence threshold

of 0.80 would correctly retain the short word but incorrectly reject

the long word.

Marginalized probabilities correct this bias, making the confi-

dence threshold equally applicable across word lengths. This has

practical implications for dictation systems, where rejection of cor-

rectly transcribed long words (e.g., medical terms, proper nouns)

forces unnecessary user corrections.

4.2 Interaction with Real Decoders
Our experiments use a mock decoder with length-based conditional

probabilities. With a real Whisper decoder conditioned on specific

audio, two effects would modify the results:

First, audio conditioning would sharpen the probability distri-

bution toward the acoustically supported tokenization. If the audio

clearly indicates “cat,” the decoder would assign high probability to

the canonical token ‘ cat’ and low probability to alternatives like

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Marginalizing Over BPE Tokenizations for Calibrated Word-Level Probabilities in Whisper Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

‘ Cat’ or ‘ c’ + ‘at’. This would reduce the marginalization

gap compared to our mock decoder results, which represent an

upper-bound scenario.

Second, context-dependent probabilities would create het-

erogeneous gap profiles across an utterance. Sentence-initial words

(where capitalization is ambiguous) would have larger case-variant

gaps. Rare or domain-specific words (less concentrated in the de-

coder’s probability distribution) might have larger subword-split

gaps.

The DAG structure and forward algorithm are independent of

the probability source and apply unchanged to any autoregressive

decoder. Our results characterize the structural tokenization ambi-

guity that exists regardless of the decoder, establishing that the gap

is non-negligible for typical English words.

4.3 Extension to Multilingual Settings
Whisper supports 99 languages with a single multilingual BPE tok-

enizer [11]. The tokenization ambiguity problem is likely amplified

for:

• Agglutinative languages (Turkish, Finnish, Hungarian):
Long compound words with many morpheme boundaries

create additional split points in the BPE vocabulary.

• Morphologically rich languages (Arabic, Russian): In-
flected forms may have different tokenization structures

from their base forms.

• CJK languages: While typically tokenized at the charac-

ter or subcharacter level, the interaction between Unicode

codepoints and BPE merges creates complex tokenization

DAGs.

A systematic cross-linguistic study of tokenization ambiguity

would be valuable future work.

4.4 Adaptive Gating Strategy
Not all words need full marginalization. Our upper-lower bound

analysis (Section 2.5) suggests a practical two-stage strategy:

(1) Stage 1: Screening. For each transcribed word, compute

the canonical probability (available at no additional cost

from normal decoding) and estimate the upper bound using

one additional decoder forward pass. If the bound gap is

below a threshold 𝜏 (e.g., 𝜏 = 0.1 nats), accept the canonical

probability.

(2) Stage 2: Marginalization. For words exceeding the thresh-
old, run the beam-pruned forward algorithm with width

𝐵 = 10.

Based on our data, approximately 55% of words (those of length

≤5) have single-case gaps below 0.05 nats and would be screened

out in Stage 1. This reduces the computational overhead to roughly

half the vocabulary, with the remaining words processed efficiently

by the beam algorithm.

4.5 Limitations
Our study has several limitations that should be considered when

interpreting the results:

Mock Decoder. The synthetic conditional probabilities do not

reflect the sharpness of real audio-conditioned distributions. Real

Whisper decoders would likely produce smaller marginalization

gaps for acoustically clear utterances, because audio conditioning

concentrates probability on the correct tokenization. Our results

should be interpreted as characterizing the structural tokenization
ambiguity rather than the exact magnitude of probability underes-

timation in deployed systems.

English-Only Analysis. We analyze only English words. The to-

kenization properties of other languages—particularly those with

different morphological structures—may differ substantially from

English.

Word Boundary Assumption. We assume that word boundaries

in the decoded token sequence are known. In practice, identifying

word boundaries from BPE tokens requires heuristics (e.g., detecting

space-prefixed tokens), which may introduce errors.

Independence Assumption. Our analysis treats each word inde-

pendently, conditioning on a fixed prefix. In reality, the marginal-

ization of one word affects the prefix distribution for subsequent

words, creating a cascading effect that we do not model.

5 CONCLUSION
We have formalized and addressed the open problem of computing

word-level probabilities that correctlymarginalize over all valid BPE

tokenizations in Whisper and similar autoregressive models. Our

segmentation DAG construction provides a compact representation

of the exponentially many valid tokenizations, and our forward

algorithm computes the exact marginal probability through efficient

dynamic programming.

Our empirical analysis of 184 English words reveals that:

(1) Valid tokenization paths grow exponentially with word

length (median: 4 for 2–3 character words to 3,006 for

11+ character words), creating a fundamental challenge

for single-tokenization probability estimation.

(2) The marginalization gap averages 0.26 nats (single-case)

and 1.09 nats (with case variants), meaning canonical esti-

mates capture as little as 34% of the true word probability.

(3) Beam-pruned marginalization with width 𝐵 = 10 recovers

>99.9% of exact probability for words up to 7 characters and

>96% for words up to 13 characters, providing a practical

approximation.

These results demonstrate that tokenization ambiguity is a sig-

nificant and quantifiable source of probability underestimation

in BPE-based models. Our marginalization framework provides

the principled correction called for by Bondarenko et al. [2], en-

abling calibrated word-level uncertainty estimates for downstream

tasks including selective prediction, confidence-based filtering, and

uncertainty-aware speech recognition.
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