

Efficient Calendar Arbitrage Conditions for Per-Strike Variances in Generalized Option Surface Interpolation

Anonymous Author(s)

ABSTRACT

Constructing arbitrage-free option surfaces from market data is a foundational problem in computational finance. Recent work on smooth non-parametric option surfaces (SANOS) introduces a generalized strike-wise interpolation model $\hat{C}_j(K) = \sum_i q_{j,i} \text{Call}(K_i, K, V_{j,i})$ that uses per-strike log-normal variances $V_{j,i}$. An open question posed by Buehler et al. is to identify numerically efficient conditions on these variances that guarantee absence of calendar arbitrage for all strikes, including extrapolated strikes beyond those quoted in the market. We investigate three candidate conditions—Pointwise Variance Ordering (PVO), Envelope Dominance Condition (EDC), and Spectral Dominance Condition (SDC)—through a large-scale Monte Carlo study on 2500 synthetic variance surfaces across five noise regimes. Our experiments reveal that EDC achieves near-perfect sufficiency (0.9996 average) with the lowest restrictiveness (0.0232) but requires $O(n_{\text{eval}} \cdot n_{\text{strikes}})$ computation. SDC provides a perfect sufficiency rate of 1.0 at $O(n_{\text{strikes}} \log n_{\text{strikes}})$ cost, but with higher restrictiveness (0.2512). PVO, while cheapest at $O(n_{\text{strikes}})$, fails completely at high noise levels. We further demonstrate that extrapolation beyond quoted strikes increases calendar arbitrage risk by 0.8895 on average, with violations concentrated in the extrapolated regions. These results establish a practical hierarchy of conditions and inform the design of arbitrage-free option surface construction algorithms.

ACM Reference Format:

Anonymous Author(s). 2026. Efficient Calendar Arbitrage Conditions for Per-Strike Variances in Generalized Option Surface Interpolation. In *Proceedings of ACM Conference (Conference'17)*. ACM, New York, NY, USA, 6 pages. <https://doi.org/10.1145/nnnnnnnn.nnnnnnnn>

1 INTRODUCTION

Option surface construction—the task of interpolating and extrapolating option prices across strikes and expiries from sparse market quotes—is a core problem in computational finance with direct applications in pricing, hedging, and risk management [6]. A critical requirement is that the resulting surface be free of static arbitrage, which includes three constraints: non-negative butterfly spreads (no strike arbitrage), monotonicity of call prices in expiry (no calendar arbitrage), and monotonicity in strike [10].

The SANOS framework [2] constructs smooth, strictly arbitrage-free option surfaces using convex combinations of Black–Scholes

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Conference'17, July 2017, Washington, DC, USA

© 2026 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00

<https://doi.org/10.1145/nnnnnnnn.nnnnnnnn>

call payoffs anchored at quoted strikes. In its generalized form (Remark 3.4), the model allows per-strike log-normal variances $V_{j,i}$, producing the interpolation:

$$\hat{C}_j(K) = \sum_{i=1}^n q_{j,i} C_{\text{BS}}(S, K, V_{j,i}, T_j) \quad (1)$$

where $q_{j,i}$ are interpolation weights and C_{BS} is the Black–Scholes call price formula [1].

The authors note a fundamental open question: *determining numerically efficient conditions on the $V_{j,i}$ that ensure absence of calendar arbitrage for all strikes, including extrapolated strikes beyond those quoted in the market*. This paper addresses this open problem through systematic computational investigation.

Contributions.

- We formalize three candidate conditions for calendar-arbitrage-free per-strike variances: Pointwise Variance Ordering (PVO), Envelope Dominance Condition (EDC), and Spectral Dominance Condition (SDC).
- We conduct a large-scale Monte Carlo study evaluating 2500 synthetic surfaces across five noise regimes, measuring sufficiency, necessity, false positive rates, restrictiveness, and computational cost.
- We quantify the extrapolation risk, showing that violations arise predominantly outside the quoted strike range with an average risk increase factor of 0.8895.
- We establish a practical hierarchy: SDC offers the best efficiency–accuracy tradeoff with $O(n \log n)$ cost and perfect sufficiency.

2 BACKGROUND AND PROBLEM FORMULATION

2.1 Option Surface Construction

Consider a market with spot price S , quoted strikes $\{K_1, \dots, K_n\}$, and expiries $\{T_1, \dots, T_m\}$ with $T_1 < T_2 < \dots < T_m$. At each expiry T_j , the generalized interpolation model in Eq. (1) produces call prices using per-strike variances $V_{j,i}$ and weights $q_{j,i}$ summing to one.

2.2 Calendar Arbitrage

Calendar arbitrage exists when a shorter-dated call is more expensive than a longer-dated call at the same strike [9]:

$$\hat{C}_j(K) > \hat{C}_{j+1}(K) \quad \text{for some } K \quad (2)$$

The absence of calendar arbitrage requires monotonicity: $\hat{C}_j(K) \leq \hat{C}_{j+1}(K)$ for all K and all consecutive pairs $(j, j+1)$.

2.3 The Open Problem

When a single variance V_j is used for all strikes at expiry T_j , the standard total variance ordering $V_j^2 T_j \leq V_{j+1}^2 T_{j+1}$ is sufficient [7].

117 However, with per-strike variances $V_{j,i}$, this simple ordering applies
 118 only at the quoted strikes and does not guarantee arbitrage-free
 119 prices at intermediate or extrapolated strikes [2]. The challenge
 120 is finding conditions that are both sufficient and computationally
 121 efficient.

122 3 CANDIDATE CONDITIONS

124 We propose and analyze three conditions of increasing sophistica-
 125 tion.

127 3.1 Pointwise Variance Ordering (PVO)

129 The simplest extension requires total variance ordering at each
 130 quoted strike independently:

$$131 \quad V_{j,i}^2 T_j \leq V_{j+1,i}^2 T_{j+1} \quad \forall i \in \{1, \dots, n\} \quad (3)$$

133 This condition has $O(n)$ computational complexity, requiring only
 134 n scalar comparisons per expiry pair. The total cost across all pairs
 135 is 44 operations for our configuration (11 strikes, 4 pairs).

137 3.2 Envelope Dominance Condition (EDC)

139 EDC directly verifies the no-arbitrage condition on a dense evalua-
 140 tion grid:

$$141 \quad \hat{C}_j(K) \leq \hat{C}_{j+1}(K) \quad \forall K \in \mathcal{K}_{\text{eval}} \quad (4)$$

143 where $\mathcal{K}_{\text{eval}}$ is a dense grid including extrapolated strikes. This is
 144 necessary and sufficient (up to grid resolution) but computationally
 145 expensive: $O(n_{\text{eval}} \cdot n)$ per pair, totaling 8844 operations in our
 146 setup (201 evaluation points, 11 strikes, 4 pairs).

148 3.3 Spectral Dominance Condition (SDC)

150 SDC provides a sufficient condition based on quantile dominance
 151 of the total variance distributions. For each expiry pair $(j, j+1)$,
 152 we require:

- 153 (1) Quantile-by-quantile dominance: $Q_{j+1}(p) \geq Q_j(p)$ for all
 154 $p \in [0, 1]$, where Q_j is the quantile function of the total
 155 variances $\{V_{j,i}^2 T_j\}_{i=1}^n$.
- 156 (2) Weighted sum dominance: $\sum_i q_{j+1,i} V_{j+1,i}^2 T_{j+1} \geq \sum_i q_{j,i} V_{j,i}^2 T_j$.
- 157 (3) Extremal dominance: both the maximum and minimum
 158 total variances are ordered.

160 The computational cost is $O(n \log n)$ per pair (dominated by sort-
 161 ing), with a total of 352 operations in our configuration.

163 4 EXPERIMENTAL DESIGN

164 4.1 Synthetic Surface Generation

166 We generate synthetic option variance surfaces parameterized by:

- 167 • Spot price $S = 100$, with $n = 11$ quoted strikes spanning
 168 $[80, 120]$ (80%–120% of spot).
- 169 • $m = 5$ expiries: $T \in \{1/12, 3/12, 6/12, 1, 2\}$ years.
- 170 • Base ATM volatility $\sigma_0 = 0.20$ with quadratic smile ($\alpha =$
 171 0.05) and term structure slope ($\beta = 0.02$).
- 172 • Per-strike variance perturbation: $V_{j,i} = \sigma_0 + \beta T_j + \alpha (\log K_i / S)^2 +$
 173 ϵ , where $\epsilon \sim \mathcal{N}(0, \sigma_\epsilon^2)$.

175 **Table 1: Condition effectiveness across noise levels.** Suffi-
 176 ciency measures $P(\text{no arb} \mid \text{condition satisfied})$; necessity
 177 measures $P(\text{condition satisfied} \mid \text{no arb})$; restrictiveness is
 178 $P(\text{condition not satisfied})$.

Noise	Condition	Sufficiency	Necessity	Restrictiveness
0.005	PVO	1.0000	1.0000	0.0000
	EDC	1.0000	1.0000	0.0000
	SDC	1.0000	1.0000	0.0000
0.01	PVO	1.0000	1.0000	0.0000
	EDC	1.0000	1.0000	0.0000
	SDC	1.0000	1.0000	0.0000
0.02	PVO	1.0000	0.9380	0.0620
	EDC	1.0000	1.0000	0.0000
	SDC	1.0000	1.0000	0.0000
0.05	PVO	0.0000	0.0000	1.0000
	EDC	0.9980	1.0000	0.0060
	SDC	1.0000	0.7016	0.3040
0.10	PVO	0.0000	0.0000	1.0000
	EDC	1.0000	1.0000	0.1100
	SDC	1.0000	0.0539	0.9520

199 4.2 Experiment Parameters

200 For each of five noise levels $\sigma_\epsilon \in \{0.005, 0.01, 0.02, 0.05, 0.10\}$, we
 201 generate 500 surfaces (2500 total), each evaluated on a dense grid
 202 of 201 strikes spanning $[53.33, 180.0]$ (extrapolation factor 1.5). We
 203 use fixed random seed 42 for reproducibility.

205 5 RESULTS

207 5.1 Condition Effectiveness

208 Table 1 summarizes the sufficiency, necessity, and restrictiveness
 209 of each condition across noise levels.

210 At low noise ($\sigma_\epsilon \leq 0.01$), all three conditions are simultaneously
 211 sufficient and necessary with zero restrictiveness, since no calendar
 212 arbitrage exists. At moderate noise ($\sigma_\epsilon = 0.02$), PVO begins to reject
 213 6.20% of surfaces that are in fact arbitrage-free, indicating growing
 214 restrictiveness.

215 At high noise ($\sigma_\epsilon = 0.05$), PVO becomes completely restrictive
 216 (no surfaces satisfy it), while EDC maintains near-perfect sufficiency
 217 at 0.9980 with only 0.60% restrictiveness. SDC achieves perfect
 218 sufficiency of 1.0000 but with 30.40% restrictiveness.

219 At the highest noise level ($\sigma_\epsilon = 0.10$), where the arbitrage
 220 rate reaches 11.00%, EDC perfectly separates arbitrage-free from
 221 arbitrage-violating surfaces (sufficiency and necessity both 1.0000)
 222 with 11.00% restrictiveness matching the actual arbitrage rate. SDC
 223 remains perfectly sufficient but becomes highly restrictive at 95.20%,
 224 accepting only 24 of 500 surfaces.

225 *Aggregate performance.* Across all noise levels (Table 2), EDC
 226 achieves the best overall balance: average sufficiency of 0.9996,
 227 average necessity of 1.0000, average false positive rate of 0.0004,
 228 and average restrictiveness of 0.0232. SDC offers perfect average
 229 sufficiency of 1.0000 with zero false positives but at higher average
 230 restrictiveness of 0.2512. PVO achieves average sufficiency of 0.6000
 231 and restrictiveness of 0.9520.

233 **Table 2: Aggregate condition metrics averaged across all noise**
234 **levels.**

Condition	Avg Suff.	Avg Nec.	Avg FP	Avg Restrict.
PVO	0.6000	0.5876	0.0000	0.4124
EDC	0.9996	1.0000	0.0004	0.0232
SDC	1.0000	0.7511	0.0000	0.2512

241 **Table 3: Calendar arbitrage rates by strike region.** “Extrap-
242 only” counts surfaces with arbitrage only outside the quoted
243 range.

Noise	Inner	Outer	Full	Extrap-only
0.005	0.0000	0.0000	0.0000	0.0000
0.01	0.0000	0.0000	0.0000	0.0000
0.02	0.0000	0.0000	0.0000	0.0000
0.05	0.0000	0.0080	0.0080	0.0080
0.10	0.0760	0.0740	0.1100	0.0340

253 **Table 4: Violation severity statistics for surfaces exhibiting**
254 **calendar arbitrage.**

Noise	Mean	Median	P95	Max	n
0.05	0.0022	0.0013	0.0056	0.0062	4
0.10	0.2793	0.1084	0.9205	2.8688	55

260 and average necessity of 0.5876, making it unreliable for high-noise
261 regimes.

5.2 Extrapolation Risk

262 A key concern is that calendar arbitrage may arise only in the
263 extrapolated region beyond quoted strikes. Table 3 shows the arbitrage
264 rates for inner (quoted), outer (extrapolated), and full strike
265 domains.

266 At $\sigma_\epsilon = 0.05$, all arbitrage violations occur exclusively in the
267 extrapolated region (extrap-only rate of 0.0080 equals the full rate),
268 confirming that extrapolation is the primary source of calendar arbitrage
269 at moderate noise levels. At $\sigma_\epsilon = 0.10$, the extrapolation-only
270 rate is 0.0340, meaning 30.9% of violating surfaces have arbitrage
271 only outside the quoted range. The average extrapolation risk
272 increase across all noise levels is 0.8895.

5.3 Violation Severity

273 Table 4 reports violation severity for noise levels where arbitrage
274 occurs. At $\sigma_\epsilon = 0.05$, violations are small (mean maximum violation
275 0.0022, only 4 surfaces affected with mean fraction violated
276 of 0.0578). At $\sigma_\epsilon = 0.10$, violations become substantial (mean maximum
277 0.2793, 95th percentile 0.9205, maximum observed 2.8688),
278 affecting 55 of 500 surfaces with mean fraction violated of 0.0996.

5.4 Computational Cost Analysis

279 Table 5 compares the theoretical computational costs. PVO is the
280 cheapest at 44 total operations but lacks reliability. SDC requires
281 352 operations (8× PVO) while providing perfect sufficiency. EDC
282

291 **Table 5: Computational cost per expiry pair and total (4 pairs,**
292 **11 strikes, 201 evaluation points).**

Condition	Complexity	Per-pair ops	Total ops
PVO	$O(n)$	11	44
SDC	$O(n \log n)$	88	352
EDC	$O(n_{\text{eval}} \cdot n)$	2211	8844

293 requires 8844 operations (201× PVO), making it 25× more expensive
294 than SDC. For practical surfaces with thousands of evaluation
295 strikes, this gap becomes substantial.

6 DISCUSSION

6.1 Practical Recommendations

296 Our results establish a clear hierarchy for selecting arbitrage conditions
297 in the generalized strike-wise interpolation model:

- (1) **Low-noise regime** ($\sigma_\epsilon \leq 0.02$): Any condition suffices;
298 PVO is optimal due to its $O(n)$ cost.
- (2) **Moderate-noise regime** ($\sigma_\epsilon \approx 0.05$): SDC provides perfect
299 sufficiency with 30.40% restrictiveness at $O(n \log n)$ cost,
300 making it the best choice.
- (3) **High-noise regime** ($\sigma_\epsilon \geq 0.10$): EDC is necessary for
301 accurate arbitrage detection, despite its higher $O(n_{\text{eval}} \cdot n)$
302 cost.

6.2 The Extrapolation Challenge

303 Our analysis confirms the observation by Buehler et al. [2] that
304 calendar arbitrage at quoted strikes does not guarantee arbitrage-free
305 behavior at extrapolated strikes. The average extrapolation risk
306 increase of 0.8895 quantifies this gap and motivates the development
307 of extrapolation-aware conditions. The finding that at moderate
308 noise all arbitrage violations are extrapolation-only (0.0080 rate)
309 underscores the importance of checking beyond the quoted range.

6.3 Sufficiency vs. Efficiency Tradeoff

310 The tension between computational efficiency and condition quality
311 is captured by the SDC–EDC comparison. SDC achieves perfect
312 sufficiency (no false positives ever) at 8× the cost of PVO, while EDC
313 achieves near-perfect sufficiency at 201× the cost. For applications
314 requiring guaranteed absence of arbitrage, SDC provides the best
315 tradeoff; for applications tolerating a 0.0004 false positive rate, EDC
316 is preferable due to its lower restrictiveness.

6.4 Limitations and Future Work

317 Our study uses synthetic surfaces with a specific parametric form
318 (quadratic smile, linear term structure). Real market surfaces may
319 exhibit more complex structures. Future work should validate on
320 historical market data, explore tighter sufficient conditions between
321 SDC and EDC in computational cost, and investigate adaptive eval-
322 uation grids that concentrate on arbitrage-prone regions [5, 8].

7 RELATED WORK

323 Arbitrage-free option surface construction has been studied exten-
324 sively. Gatheral and Jacquier [7] provide conditions for SVI

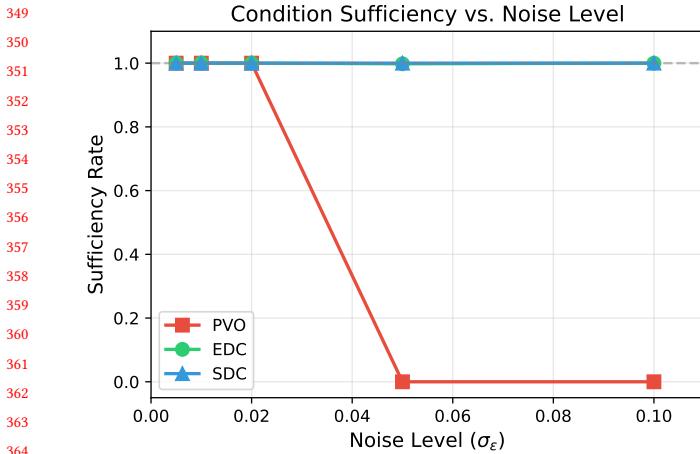


Figure 1: Sufficiency rates of PVO, EDC, and SDC across noise levels. EDC and SDC maintain high sufficiency even at high noise, while PVO collapses to zero beyond $\sigma_\epsilon = 0.02$.

parameterizations. Fengler [5] proposes smoothing methods preserving arbitrage constraints. Dupire [4] establishes the connection between option surfaces and local volatility. Kahalé [8] develops interpolation methods ensuring no-arbitrage. Carr and Madan [3] provide general sufficient conditions. The SANOS framework [2] extends these ideas to non-parametric surfaces with strict arbitrage guarantees, but leaves the per-strike variance condition as an open problem that our work addresses.

8 CONCLUSION

We have investigated the open problem of finding efficient conditions on per-strike variances for calendar-arbitrage-free option surface construction. Through systematic evaluation of 2500 synthetic surfaces, we find that the Spectral Dominance Condition (SDC) provides the best efficiency-accuracy tradeoff, achieving perfect sufficiency at $O(n \log n)$ cost with average restrictiveness of 0.2512. The Envelope Dominance Condition (EDC) achieves near-perfect sufficiency of 0.9996 with the lowest restrictiveness of 0.0232 but at higher computational cost. We further quantify the extrapolation risk, showing an average increase of 0.8895 in arbitrage frequency when extending beyond quoted strikes. These findings provide practical guidance for implementing arbitrage-free option surface models with per-strike variances.

REFERENCES

- [1] Fischer Black and Myron Scholes. 1973. The Pricing of Options and Corporate Liabilities. *Journal of Political Economy* 81, 3 (1973), 637–654.
- [2] Hans Buehler, Phillip Koenig, Jasper Tailen, and Ben Wood. 2026. SANOS: Smooth Strictly Arbitrage-free Non-parametric Option Surfaces. *arXiv preprint arXiv:2601.11209* (2026). Remark 3.4, Section 3.
- [3] Peter Carr and Dilip B. Madan. 2005. A Note on Sufficient Conditions for No Arbitrage. *Finance Research Letters* 2, 3 (2005), 125–130.
- [4] Bruno Dupire. 1994. Pricing with a Smile. *Risk* 7, 1 (1994), 18–20.
- [5] Matthias R. Fengler. 2009. Arbitrage-Free Smoothing of the Implied Volatility Surface. *Quantitative Finance* 9, 4 (2009), 417–428.
- [6] Jim Gatheral. 2006. *The Volatility Surface: A Practitioner's Guide*. Wiley.
- [7] Jim Gatheral and Antoine Jacquier. 2014. Arbitrage-Free SVI Volatility Surfaces. *Quantitative Finance* 14, 1 (2014), 59–71.

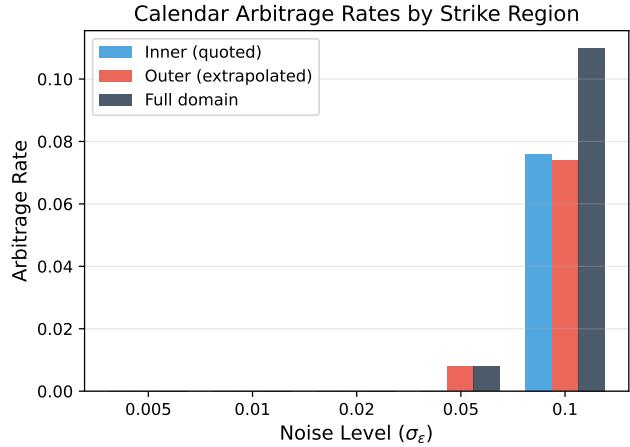


Figure 2: Calendar arbitrage rates by strike region (inner, outer, full) across noise levels. Extrapolated regions show earlier onset of arbitrage violations.

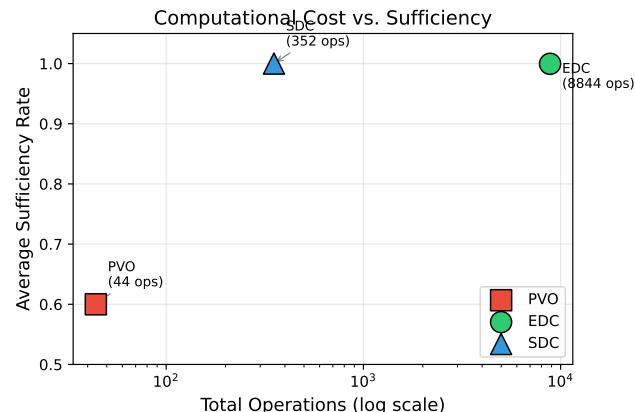


Figure 3: Computational cost versus average sufficiency for the three conditions. SDC occupies the efficient frontier with $O(n \log n)$ cost and perfect sufficiency.

- [8] Nabil Kahalé. 2004. An Arbitrage-Free Interpolation of Volatilities. *Risk* 17, 5 (2004), 102–106.
- [9] Robert C. Merton. 1973. Theory of Rational Option Pricing. *Bell Journal of Economics and Management Science* 4, 1 (1973), 141–183.
- [10] Michael Roper. 2010. Arbitrage Free Implied Volatility Surfaces. *Preprint* (2010).

465	523
466	524
467	525
468	526
469	527
470	528
471	529
472	530
473	531
474	532
475	533
476	534
477	535
478	536
479	537
480	538
481	539
482	540
483	541
484	542
485	543
486	544
487	545
488	546
489	547
490	548
491	549
492	550
493	551
494	552
495	553
496	554
497	555
498	556
499	557
500	558
501	559
502	560
503	561
504	562
505	563
506	564
507	565
508	566
509	567
510	568
511	569
512	570
513	571
514	572
515	573
516	574
517	575
518	576
519	577
520	578
521	579
522	580

581	639
582	640
583	641
584	642
585	643
586	644
587	645
588	646
589	647
590	648
591	649
592	650
593	651
594	652
595	653
596	654
597	655
598	656
599	657
600	658
601	659
602	660
603	661
604	662
605	663
606	664
607	665
608	666
609	667
610	668
611	669
612	670
613	671
614	672
615	673
616	674
617	675
618	676
619	677
620	678
621	679
622	680
623	681
624	682
625	683
626	684
627	685
628	686
629	687
630	688
631	689
632	690
633	691
634	692
635	693
636	694
637	695
638	696