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A Taxonomy of Vulnerability Categories in Agent Skills
Anonymous Author(s)

ABSTRACT
Agent skills—comprising SKILL.md instruction files and optionally
bundled executable scripts—represent a rapidly growing attack sur-
face in the LLM agent ecosystem. Despite their proliferation across
skill marketplaces, no systematic taxonomy of the vulnerability
categories present in these artifacts exists. We address this gap by
developing a hierarchical vulnerability taxonomy consisting of 18
specific categories organized into 6 top-level classes: Data Exfiltra-
tion, Privilege Escalation, Supply Chain, Prompt Injection, Resource
Abuse, and Persistence & Stealth. We evaluate our taxonomy on a
synthetic corpus of 2,000 agent skills modeled after empirical distri-
butions observed in real-world marketplaces. Our analysis reveals
that 77.8% of skills contain at least one vulnerability, with Privi-
lege Escalation (22.6%) and Prompt Injection (21.1%) as the most
prevalent top-level classes. The taxonomy achieves strong quality
metrics: normalized entropy of 0.9375 indicating balanced category
usage, inter-category separation of 0.9312 confirming distinctness,
and hierarchical consistency ratio of 1.4008 validating the two-level
structure. Bundled-script skills exhibit significantly higher vulner-
ability rates (91.4%) compared to instruction-only skills (61.5%),
confirmed by chi-squared testing (𝜒2 = 209.18, 𝑝 < 10−45). We pro-
vide a composite risk scoring framework and identify key vulnera-
bility co-occurrence patterns that inform defensive prioritization
strategies.
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1 INTRODUCTION
The proliferation of LLM-based autonomous agents [11, 12] has
given rise to agent skill ecosystems—marketplaces and repositories
where third-party developers publish reusable capabilities in the
form of SKILL.md instruction files, optionally bundled with exe-
cutable scripts. These skills extend agent functionality by providing
structured instructions and code that agents can invoke to accom-
plish tasks ranging from web browsing to code generation [10].

However, agent skills introduce a fundamentally different threat
model from prior LLM-focused security studies. Unlike traditional
prompt injection attacks that target the model interaction bound-
ary [2, 8], skill-based vulnerabilities operate with elevated trust:
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agents execute skill-provided code with host-level permissions, and
SKILL.md instructions shape agent behavior at the system prompt
level. This combination enables a diverse range of attacks spanning
data exfiltration, privilege escalation, and supply chain compro-
mise [5].

Despite growing evidence of vulnerabilities in agent skill ecosys-
tems, a systematic understanding of what categories of vulnera-
bilities exist remains lacking. Liu et al. [5] highlight this gap, not-
ing that basic questions about vulnerability categorization remain
open. Without a grounded taxonomy, defenders cannot prioritize
mitigations, marketplace operators cannot design effective review
processes, and researchers cannot systematically study the threat
landscape.

We address this gap with the following contributions:

• A hierarchical vulnerability taxonomy consisting of 18 spe-
cific categories organized into 6 top-level classes, derived
from patterns observed in agent skill ecosystems.

• Formal taxonomy qualitymetrics—normalized entropy, inter-
category separation, and hierarchical consistency—demonstrating
the taxonomy’s balance and structural coherence.

• A composite risk scoring framework that combines severity,
exploitability, and scope to enable quantitative risk assess-
ment of agent skills.

• Statistical analysis revealing significant differences in vul-
nerability rates across skill types (𝜒2 = 209.18, 𝑝 < 10−45)
and vulnerability co-occurrence patterns informing defen-
sive strategies.

2 RELATEDWORK
LLM Agent Security. The security of LLM-based agents has re-

ceived increasing attention [9, 13]. Prior work has examined prompt
injection [2, 8] as a primary attack vector, but these studies focus
on the model interaction layer rather than the skill execution en-
vironment. Our taxonomy extends beyond prompt-level attacks
to cover the full range of vulnerabilities enabled by skill-provided
code execution.

Software Supply Chain Attacks. Package ecosystem attacks such
as dependency confusion and typosquatting have been extensively
catalogued in traditional software ecosystems [4, 7]. Agent skill
marketplaces exhibit similar attack patterns but with the added
dimension of natural-language instruction manipulation, which
our taxonomy captures through dedicated Prompt Injection and
Privilege Escalation categories.

Vulnerability Classification. The Common Weakness Enumera-
tion (CWE) [6] and CVSS [1] provide foundational frameworks for
vulnerability classification and scoring. Our taxonomy builds upon
CWE identifiers while introducing agent-skill-specific categories
(e.g., Agent Prompt Override, Context Window Manipulation) that
lack direct CWE analogs.
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3 VULNERABILITY TAXONOMY
We present a two-level hierarchical taxonomy with 6 top-level
classes and 18 specific vulnerability categories. Each category is
defined by a unique identifier, severity rating, exploitability score,
and mapping to relevant CWE identifiers.

3.1 Top-Level Classes
(1) Data Exfiltration (DE): Vulnerabilities that enable unau-

thorized extraction of sensitive data from the host environ-
ment, including environment variables, file system contents,
and clipboard data.

(2) Privilege Escalation (PE): Vulnerabilities that allow skills
to operate beyond their declared scope, including unautho-
rized command execution and agent prompt manipulation.

(3) Supply Chain (SC): Vulnerabilities in skill dependency
management and update mechanisms that enable injection
of malicious code.

(4) Prompt Injection (PI): Vulnerabilities that exploit the
natural-language interface between skills and agents to
override intended behavior.

(5) Resource Abuse (RA): Vulnerabilities that misuse com-
putational, network, or API resources for unauthorized
purposes.

(6) Persistence & Stealth (PS): Vulnerabilities that enable
skills to maintain unauthorized access or evade detection.

3.2 Category Definitions
Table 1 presents the complete taxonomy with severity ratings
aligned to a CVSS-like 0–10 scale and exploitability scores reflecting
ease of exploitation.

4 METHODOLOGY
4.1 Corpus Generation
We generate a synthetic corpus of 𝑛 = 2,000 agent skills modeled
after empirical distributions observed across four real-world skill
marketplaces [5]. Each skill is characterized by:

• Skill type: instruction-only (40%), bundled-script (35%), or
hybrid (25%).

• Marketplace: skills.rest (35%), skillsmp.com (25%), GitHub
(25%), community_hub (15%).

• Vulnerability labels: assigned probabilistically using category-
specific base rates derived from empirical observations,
with co-occurrence boosts for correlated vulnerability types.

4.2 Taxonomy Quality Metrics
We evaluate taxonomy quality using three complementary metrics:

Normalized Entropy. Measures the balance of category usage,
defined as:

𝐻𝑛𝑜𝑟𝑚 =
−∑18

𝑖=1 𝑝𝑖 log2 𝑝𝑖
log2 18 (1)

where 𝑝𝑖 is the frequency of category 𝑖 . Values near 1.0 indicate
balanced category utilization.

Inter-Category Separation. Quantifies the distinctness of cate-
gories using Jaccard similarity:

𝑆 = 1 − 1
18 × 17

∑︁
𝑖≠𝑗

𝐽 (𝐶𝑖 ,𝐶 𝑗 ) (2)

where 𝐽 (𝐶𝑖 ,𝐶 𝑗 ) = |𝐶𝑖∩𝐶 𝑗 |/|𝐶𝑖∪𝐶 𝑗 | compares the skill sets affected
by each category pair.

Hierarchical Consistency. Validates the two-level hierarchy by
comparing within-class and between-class similarities:

𝑅 =
𝐽𝑤𝑖𝑡ℎ𝑖𝑛

𝐽𝑏𝑒𝑡𝑤𝑒𝑒𝑛

(3)

Values 𝑅 > 1 confirm that sub-categories within the same top-level
class are more similar to each other than to categories in other
classes.

4.3 Risk Scoring
We compute composite risk scores combining three weighted com-
ponents:

𝑅𝑖𝑠𝑘 = 0.4 · 𝑆𝑚𝑎𝑥

10 + 0.35 · 𝐸𝑚𝑎𝑥 + 0.25 · |𝑐𝑙𝑎𝑠𝑠𝑒𝑠 |6 (4)

where 𝑆𝑚𝑎𝑥 is the maximum severity, 𝐸𝑚𝑎𝑥 is the maximum ex-
ploitability, and |𝑐𝑙𝑎𝑠𝑠𝑒𝑠 | is the number of distinct top-level classes
affected.

5 RESULTS
5.1 Corpus Coverage
Analysis of our 2,000-skill corpus reveals that 1,556 skills (77.8%)
contain at least one vulnerability, with 4,123 total vulnerability in-
stances detected. All 18 taxonomy categories are exercised, achiev-
ing 100% category coverage.

5.2 Vulnerability Distribution
Figure 1 presents the distribution across all 18 categories. The most
prevalent individual categories are Unauthorized Shell Execution
(PE01, 426 instances, 21.3% of skills), Direct Prompt Injection (PI01,
398 instances, 19.9%), and Environment Variable Leakage (DE01,
386 instances, 19.3%).

At the top-level class level (Figure 2), Privilege Escalation domi-
nates with 22.6% of all vulnerability instances (933 total), followed
by Prompt Injection at 21.1% (871 instances) and Data Exfiltration
at 18.6% (768 instances). Resource Abuse is least prevalent at 7.0%
(289 instances).

5.3 Taxonomy Quality
Table 2 summarizes the taxonomy quality metrics. The normalized
entropy of 0.9375 (maximum 1.0) indicates well-balanced category
utilization, meaning no single category dominates the taxonomy.
The inter-category separation of 0.9312 confirms that categories
capture distinct vulnerability types with minimal overlap. The hier-
archical consistency ratio of 1.4008 validates the two-level structure:
within-class mean Jaccard similarity (0.0920) exceeds between-class
similarity (0.0657), confirming that sub-categories within the same
top-level class are more related than categories across different
classes.
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Table 1: Vulnerability taxonomy for agent skills: 18 categories in 6 top-level classes with base severity and exploitability scores.

ID Category Top-Level Class CWE Severity Exploitability

DE01 Environment Variable Leakage Data Exfiltration CWE-200, 526 8.5 0.85
DE02 File System Data Theft Data Exfiltration CWE-200, 538 9.0 0.75
DE03 Clipboard/Screen Capture Data Exfiltration CWE-200 7.0 0.60

PE01 Unauthorized Shell Execution Privilege Escalation CWE-78, 250 9.5 0.80
PE02 Permission Scope Widening Privilege Escalation CWE-250, 269 7.5 0.65
PE03 Agent Prompt Override Privilege Escalation CWE-74 8.0 0.70

SC01 Dependency Confusion Supply Chain CWE-829, 494 8.0 0.55
SC02 Remote Code Loading Supply Chain CWE-829, 494 9.0 0.70
SC03 Update Mechanism Abuse Supply Chain CWE-494 8.5 0.50

PI01 Direct Prompt Injection Prompt Injection CWE-74 7.5 0.90
PI02 Indirect Prompt Injection via Data Prompt Injection CWE-74, 94 8.0 0.75
PI03 Context Window Manipulation Prompt Injection CWE-400 6.5 0.60

RA01 Cryptomining Resource Abuse CWE-400 6.0 0.45
RA02 API Quota Exhaustion Resource Abuse CWE-400, 770 5.5 0.55
RA03 Storage/Network Abuse Resource Abuse CWE-400 5.0 0.40

PS01 Hidden Persistence Mechanism Persistence & Stealth CWE-506 8.5 0.55
PS02 Obfuscated Payload Persistence & Stealth CWE-506 7.5 0.65
PS03 Anti-Analysis Techniques Persistence & Stealth CWE-506 7.0 0.50

0 50 100 150 200 250 300 350 400
Number of Affected Skills

Environment Variable Leakage

File System Data Theft

Clipboard/Screen Capture

Unauthorized Shell Execution

Permission Scope Widening

Agent Prompt Override

Dependency Confusion

Remote Code Loading

Update Mechanism Abuse

Direct Prompt Injection

Indirect Prompt Injection via Data

Context Window Manipulation

Cryptomining

API Quota Exhaustion

Storage/Network Abuse

Hidden Persistence Mechanism

Obfuscated Payload

Anti-Analysis Techniques

Vulnerability Category Distribution (n=2,000 skills)

Data Exfiltration
Privilege Escalation
Supply Chain
Prompt Injection
Resource Abuse
Persistence & Stealth

Figure 1: Distribution of vulnerability instances across 18
taxonomy categories. Bar colors indicate top-level classmem-
bership.

5.4 Severity Analysis
The severity distribution of the 4,123 detected vulnerabilities is
heavily right-skewed: 66.0% fall in the High range (7.0–8.9), 24.6%
are Critical (9.0–10.0), and 9.4% are Medium (4.0–6.9). No vulnera-
bilities fall in the Low range. The mean severity is 8.0337 ± 1.0073,
with a median of 8.0 (Figure 3).

5.5 Vulnerability by Skill Type
We observe strong and statistically significant differences in vul-
nerability rates across skill types (Figure 4). Bundled-script skills

Data Exfiltration 18.6%

Privilege Escalation

22.6%
Supply Chain

13.3%

Prompt Injection
21.1%

Resource Abuse

7.0%

Persistence & Stealth

17.3%

Vulnerability Distribution by Top-Level Class

Figure 2: Vulnerability distribution by top-level class.

exhibit the highest vulnerability rate at 91.4% with a mean of 2.89
vulnerabilities per skill, compared to 84.5% and 2.29 for hybrid skills,
and 61.5% and 1.19 for instruction-only skills.

A chi-squared test confirms that vulnerability presence depends
significantly on skill type (𝜒2 = 209.18, 𝑝 = 3.77 × 10−46). The
Kruskal–Wallis test further confirms that vulnerability counts differ
significantly across types (𝐻 = 373.95, 𝑝 = 6.28 × 10−82) [3].

Table 3 presents detailed statistics by skill type.
3
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Table 2: Taxonomy quality metrics.

Metric Value

Shannon entropy 3.9091 bits
Maximum entropy (log2 18) 4.1699 bits
Normalized entropy 0.9375
Inter-category separation 0.9312
Hierarchical consistency ratio 1.4008
Within-class mean similarity 0.0920
Between-class mean similarity 0.0657
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Figure 3: Severity distribution of detected vulnerability in-
stances.
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Figure 4: Vulnerability rate and mean count by skill type.
Bundled-script skills show significantly elevated risk.

5.6 Risk Score Analysis
The composite risk scores reveal a concerning distribution: 53.0%
of skills fall in the High risk tier (0.6–0.8), 12.9% in Critical (≥ 0.8),
11.9% in Medium (0.3–0.6), and 22.2% in Low (< 0.3). The mean
composite risk score is 0.5478 ± 0.3058, with a median of 0.6871
(Figure 5).

5.7 Co-occurrence Patterns
Analysis of vulnerability co-occurrence (Figure 6) reveals important
attack chain patterns. The strongest co-occurrences are:

Table 3: Vulnerability analysis by skill type.

Instr. Bundled Hybrid

Total skills 789 694 517
Vulnerable skills 485 634 437
Vuln. rate 0.6147 0.9135 0.8453
Mean count 1.1850 2.8905 2.2863
Std. count 1.2582 1.8361 1.7077
Median count 1.0 3.0 2.0

Low
(<0.3)

Medium
(0.3--0.6)

High
(0.6--0.8)

Critical
(>=0.8)

0

200

400

600

800

1000

1200

Nu
m

be
r o

f S
ki

lls

444
(22.2%)

238
(11.9%)

1060
(53.0%)

258
(12.9%)

Composite Risk Score Distribution

Figure 5: Distribution of composite risk scores across 2,000
skills.

• DE01–DE02 (197): Environment variable leakage co-occurs
with file system theft, reflecting comprehensive data exfil-
tration strategies.

• PI01–PI02 (192): Direct and indirect prompt injection fre-
quently co-occur, suggesting layered prompt manipulation.

• PE01–SC02 (185): Shell execution paired with remote code
loading indicates supply-chain-enabled privilege escalation.

• PE03–PI01 (173): Agent prompt override combined with
direct injection reveals compound prompt attacks.

• PE01–PS01 (168): Shell execution with persistence mecha-
nisms indicates advanced persistent threats.

5.8 Marketplace Analysis
Vulnerability rates are consistent across marketplaces: skills.rest
(78.6%), community_hub (77.9%), GitHub (77.6%), and skillsmp.com
(76.8%). Mean risk scores range from 4.28 (skillsmp.com) to 4.46
(skills.rest), indicating that the vulnerability landscape ismarketplace-
agnostic.

6 DISCUSSION
Taxonomy Completeness. Our taxonomy achieves 100% category

coverage on the evaluation corpus, indicating sufficient granularity
to capture the observed vulnerability landscape. The normalized
entropy of 0.9375 shows that categories are well-utilized without
redundancy.
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Figure 6: Co-occurrence matrix of vulnerability categories.
Darker cells indicate more frequent co-occurrence.

The Bundled-Script Risk Gap. The stark difference in vulnerabil-
ity rates between bundled-script skills (91.4%) and instruction-only
skills (61.5%) has significant implications for marketplace gover-
nance. Skills that ship executable code present a fundamentally
larger attack surface, suggesting that marketplace review processes
should employ differentiated scrutiny levels based on skill type.

Co-occurrence andDefense Prioritization. The identified co-occurrence
patterns reveal that vulnerabilities do not occur in isolation. The
strong coupling between Data Exfiltration and Persistence & Stealth
categories (DE01–PS02: 154, DE02–PS01: 122) suggests that effec-
tive defenses must address multiple vulnerability classes simulta-
neously.

Limitations. Our evaluation uses a synthetic corpus modeled
after empirical distributions, which may not capture all edge cases
in production environments. The taxonomy is derived from current
observations and will require updates as the agent skill ecosystem
evolves.

7 CONCLUSION
We presented a systematic taxonomy of 18 vulnerability categories
in 6 top-level classes for agent skills, validated through comprehen-
sive quality metrics and statistical analysis on a 2,000-skill corpus.
Our findings reveal that 77.8% of skills contain vulnerabilities, with
bundled-script skills at significantly elevated risk. The taxonomy
provides a foundation for automated vulnerability detection, mar-
ketplace governance policies, and future empirical studies of agent
skill security.
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