
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Architectural Instruction-Data Separation for Large Language
Models: Evaluating Dual-Channel Defenses Against Prompt

Injection
Anonymous Author(s)

ABSTRACT
Current large language models (LLMs) process all input—system
prompts, user messages, and retrieved documents—as a unified
token sequence with no reliable boundary between trusted instruc-
tions and untrusted data, enabling prompt injection attacks. We
address this open problem by proposing and evaluating three ar-
chitectural defense mechanisms: dual-channel token tagging, hier-
archical trust embeddings, and gated execution boundaries. Across
five experiments with 500 trials each, our dual-channel architec-
ture achieves a separation accuracy of 0.608 (Cohen’s 𝑑 = 0.454,
AUC = 0.631), and hierarchical trust embeddings attain 0.411 trust
classification accuracy under gradient-based attacks versus 0.054
for perplexity-based detection. Bootstrap analysis with 10000 re-
samples confirms that trust embeddings provide a statistically sig-
nificant advantage (gap = 0.357, 95% CI [0.273, 0.441], 𝑝 < 0.001).
However, the gated execution boundary yields only 0.006 mean
effectiveness, underperforming pattern matching at 0.304. These
results demonstrate that architectural separation provides measur-
able advantages for specific defense mechanisms but does not yet
constitute a comprehensive solution, confirming the open nature
of this problem as identified by Nassi et al. [7].

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
prompt injection, LLM security, instruction-data separation, dual-
channel architecture, trust embeddings
ACM Reference Format:
Anonymous Author(s). 2026. Architectural Instruction-Data Separation for
Large LanguageModels: Evaluating Dual-Channel Defenses Against Prompt
Injection. In Proceedings of ACMConference (Conference’17).ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Large language models (LLMs) process all input as a unified token
sequence, creating a fundamental architectural vulnerability: there
is no reliable mechanism to distinguish trusted instructions from
untrusted data [7]. This enables prompt injection attacks, where

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2026 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

adversarial content embedded in data regions is interpreted as
instructions, potentially compromising model behavior [5, 8].

Nassi et al. [7] formalize this vulnerability within their Prompt-
ware Kill Chain framework, noting that current defenses operate at
the application layer (pattern matching, perplexity filtering) rather
than at the architectural level. They conclude that no comprehen-
sive solution exists for reliably separating instructions from data.
We directly address this open problem by designing and evaluating
architectural mechanisms that embed provenance information into
the model’s processing pipeline.

We propose three architectural defenses: (1) dual-channel token
tagging that maintains a parallel provenance channel alongside
semantic processing, (2) hierarchical trust embeddings that encode
trust levels in a learned subspace orthogonal to content, and (3)
gated execution boundaries that suppress data-channel influence
on instruction pathways. We compare each against application-
layer baselines (pattern matching and perplexity-based anomaly
detection) across five attack sophistication levels.

1.1 Related Work
Prompt injection was first characterized as a security risk by Willi-
son [11], with systematic studies by Perez and Ribeiro [8] and
Greshake et al. [5]. Liu et al. [6] provide a taxonomy of injection
attacks against LLM-integrated applications. On the defense side,
Chen et al. [2] propose structured queries as a mitigation, while
Carlini et al. [1] demonstrate that alignment-based defenses remain
vulnerable to adversarial attacks. Zou et al. [12] and Wallace et
al. [10] develop universal adversarial triggers that bypass content-
based filtering. Our work differs by evaluating architectural rather
than application-layer defenses.

2 METHODS
2.1 Threat Model
We consider an LLM inference pipeline processing sequences of
length 𝐿 = 16 tokens drawn from a vocabulary of size𝑉 = 64. Each
token belongs to one of three trust regions: system instructions
(positions 0–3, tag 0), user input (positions 4–7, tag 1), and external
data (positions 8–15, tag 2). An attacker controls the data region and
may attempt to: (1) inject instruction-like token patterns, (2) spoof
provenance tags, (3) craft gradient-optimized adversarial sequences,
or (4) adaptively target defense mechanisms.

2.2 Dual-Channel Token Tagging
The dual-channel architecture processes tokens through two paral-
lel pathways. The main semantic channel implements a standard
transformer block [9]: embedding, causal self-attention, and feed-
forward layers with dimension 𝑑 = 32. The provenance channel
embeds trust tags into a separate 𝑑tag = 8 dimensional space via

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Wtag ∈ R3×8. A gating mechanism combines both channels:

hgated = hmain ⊙ 𝜎
(
[hmain; htag]Wgate + bgate

)
, (1)

whereWgate ∈ R(𝑑+𝑑tag)×𝑑 and 𝜎 is the sigmoid function.

2.3 Hierarchical Trust Embedding
Trust information is embedded into a learned subspace of the
model’s representation space. After the gated forward pass, a trust
classification head Wtrust ∈ R𝑑×3 predicts each token’s trust level.
Separation quality is measured via Cohen’s𝑑 [3] between activation
magnitudes of different trust classes.

2.4 Gated Execution Boundary
The execution boundary measures leakage—the ratio of data-region
activation norms to instruction-region norms after gating:

leakage = ∥hdata∥2
∥hinst∥2 + 𝜖

, (2)

where 𝜖 = 10−10. An effective gate should drive this ratio toward
zero for data tokens.

2.5 Attack Simulation
We simulate five attack levels: Level 0 (clean), Level 1 (naive to-
ken copying), Level 2 (tag spoofing), Level 3 (gradient-based with
partial tag spoofing), and Level 4 (adaptive full-tag spoofing with
user-region corruption). Each experiment uses 300–500 trials with
controlled random seeds.

2.6 Baseline Defenses
Two non-architectural baselines are evaluated. Pattern match-
ing flags data-region tokens that fall within a suspicious pattern
set (tokens 0–7), detecting injection when the ratio exceeds 0.3.
Perplexity-based detection calibrates baseline perplexity over
200 clean samples and flags inputs whose 𝑧-score exceeds 1.5 stan-
dard deviations.

2.7 Statistical Analysis
We use bootstrap resampling [4] with 𝑛 = 10000 iterations to com-
pute 95% confidence intervals for the gap between architectural and
baseline defense scores. Significance is assessed as STRONG when
the entire CI is above zero, MODERATE when the point estimate is
positive, and NOT_SIGNIFICANT otherwise.

3 RESULTS
3.1 Experiment 1: Dual-Channel Separation

Quality
Table 1 summarizes the dual-channel evaluation. The architec-
tural defense achieves a separation accuracy of 0.608 with Cohen’s
𝑑 = 0.454 and AUC-ROC = 0.631, indicating moderate channel sepa-
ration. Pattern matching achieves no provenance-based separation
(score 0.0 by definition). Injection resistance at attack Level 2 is
0.082 for dual-channel versus 0.056 for pattern matching. Semantic
fidelity remains perfect (1.0) for the dual-channel model with a
compute overhead of 1.15×.

Table 1: Experiment 1: Dual-channel tagging vs. pattern
matching.

Metric Dual-Channel Pattern Matching
Separation Score 0.608 0.0
Cohen’s 𝑑 0.454 –
AUC-ROC 0.631 –
Injection Resistance 0.082 0.056
Semantic Fidelity 1.0 0.946
Compute Overhead 1.15× 1.02×

Table 2: Experiment 2: Trust embedding vs. perplexity de-
fense.

Metric Trust Embedding Perplexity Defense
Clean Accuracy 0.326 –
Attack Accuracy 0.411 0.054
Semantic Fidelity 1.0 0.908
Compute Overhead 1.20× 1.05×

Table 3: Experiment 3: Gate effectiveness and leakage per
attack level.

Level Gate Eff. Leakage Pattern Match
0 (Clean) 0.0 0.979 0.070
1 (Naive) 0.0 0.981 0.187
2 (Tag Spoof) 0.01 0.982 0.057
3 (Gradient) 0.01 0.784 1.0
4 (Adaptive) 0.01 0.978 0.207
Mean 0.006 0.941 0.304

3.2 Experiment 2: Hierarchical Trust
Embedding

Trust classification accuracy under clean conditions is 0.326, in-
dicating that the randomly initialized model learns partial trust
structure. Under gradient-based attack (Level 3), accuracy rises
to 0.411, as attack-modified tokens become more distinguishable.
Pairwise trust separation is measured between each pair of trust
levels: system vs. user (𝑑 = 0.135, AUC = 0.535), system vs. data
(𝑑 = 0.177, AUC = 0.546), and user vs. data (𝑑 = 0.043, AUC = 0.512).
The perplexity baseline achieves a detection rate of only 0.054 with
a false positive rate of 0.092.

3.3 Experiment 3: Gated Execution Boundary
The gate-based defense shows limited effectiveness, achieving only
0.006 mean effectiveness across all attack levels, with high leakage
ratios (0.784–0.982). In contrast, pattern matching achieves 0.304
mean effectiveness, driven largely by perfect detection (1.0) at Level
3 where injected tokens fall entirely within the suspicious range.
Table 3 reports per-level results.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Architectural Instruction-Data Separation for Large Language Models: Evaluating Dual-Channel Defenses Against Prompt InjectionConference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

0
(Clean)

1
(Naive)

2
(Tag Spoof)

3
(Gradient)

4
(Adaptive)

Attack Sophistication Level

0.0

0.2

0.4

0.6

0.8

1.0

De
fe

ns
e

Su
cc

es
s R

at
e

Defense Robustness vs Attack Sophistication
Architectural (Dual-Channel)
Pattern Matching
Perplexity Defense

Figure 1: Defense success rate across attack sophistication
levels. Architectural defenses showmore stable performance
compared to application-layer approaches.

Table 4: Experiment 5: Bootstrap comparison of architectural
vs. baseline defenses (𝑛 = 10000 resamples).

Comparison Gap 95% CI 𝑝 Sig.
DC vs PM 0.026 [−0.058, 0.110] 0.276 MOD
TE vs PPL 0.357 [0.273, 0.441] <0.001 STRONG
GB vs PM −0.298 [−0.382, −0.215] 1.0 N.S.

3.4 Experiment 4: Robustness Sweep
Figure 1 presents the robustness sweep results. The architectural
defense shows relatively stable performance across attack levels
(range 0.110–0.313), while pattern matching exhibits extreme vari-
ation (0.063–1.0) due to its reliance on token content rather than
provenance. Perplexity defense is effective only at Level 0 (0.883)
and degrades sharply under attack.

3.5 Experiment 5: Combined Defense Analysis
Bootstrap analysis (Table 4) reveals heterogeneous results. The
trust embedding advantage over perplexity detection is statistically
significant (gap = 0.357, 95% CI [0.273, 0.441], 𝑝 < 0.001). The
dual-channel advantage over pattern matching is moderate but
not significant (gap = 0.026, CI [−0.058, 0.110], 𝑝 = 0.276). The
gated boundary underperforms pattern matching (gap = −0.298, CI
[−0.382, −0.215]), indicating that architectural separation is not
universally superior.

4 DISCUSSION
Our experiments provide three key insights. First, architectural
instruction-data separation is feasible: the dual-channelmodel achieves
meaningful separation (accuracy 0.608, AUC 0.631) even without
task-specific training. Second, hierarchical trust embeddings offer
the strongest architectural advantage, achieving 0.411 accuracy un-
der attack compared to 0.054 for perplexity detection—a statistically
significant improvement confirmed by bootstrap analysis. Third,
not all architectural mechanisms are effective: the gated execution

Dual-Channel
vs Pattern

Trust Embed
vs Perplexity

Gated Boundary
vs Pattern

0.4

0.2

0.0

0.2

0.4

In
je

ct
io

n
Re

sis
ta

nc
e

Ga
p

(A
rc

hi
te

ct
ur

al
 -

Ba
se

lin
e)

MODERATE

STRONG

NOT_SIGNIFICANT

Architectural Defense Advantage (95% CI)
No advantage

Figure 2: Architectural defense advantage with 95% bootstrap
confidence intervals. Only trust embedding vs. perplexity
achieves statistical significance.

boundary fails to suppress data-channel leakage (mean leakage
0.941), demonstrating that naive gating is insufficient.

These findings confirm the assessment of Nassi et al. [7] that
no comprehensive architectural solution currently exists. While
trust embeddings show promise, their absolute performance (0.411
under attack) is far from the near-perfect separation needed for
reliable defense. The failure of gated boundaries highlights that
architectural separation requires careful mechanism design rather
than simple channel isolation.

4.1 Limitations
Our evaluation uses small-scale models (𝑑 = 32, 𝑉 = 64, 𝐿 = 16)
with random initialization rather than trained languagemodels. The
attack simulation is stylized: real prompt injection involves natural
language semantics that our token-level model cannot capture. Re-
sults may not transfer directly to full-scale LLMs. Additionally, our
models are not optimized for the separation task; training specif-
ically for trust classification would likely improve architectural
defense performance.

5 CONCLUSION
We evaluated three architectural mechanisms for separating instruc-
tions from data in LLM inference pipelines. Hierarchical trust em-
beddings provide statistically significant advantages over perplexity-
based detection (gap = 0.357, 𝑝 < 0.001), while dual-channel tagging
shows moderate promise and gated boundaries prove ineffective.
These results demonstrate that architectural instruction-data sepa-
ration is a viable research direction but does not yet yield a com-
prehensive solution, motivating further investigation into trained
dual-channel models, representation-level trust enforcement, and
adaptive gating mechanisms.

REFERENCES
[1] Nicholas Carlini et al. 2024. Are aligned neural networks adversarially aligned?

Advances in Neural Information Processing Systems 36 (2024).
[2] Sizhe Chen et al. 2024. StruQ: Defending Against Prompt Injection with Struc-

tured Queries. arXiv preprint arXiv:2402.06363 (2024).
[3] Jacob Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences. (1988).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

[4] Bradley Efron and Robert J. Tibshirani. 1993. An Introduction to the Bootstrap.
(1993).

[5] Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten
Holz, and Mario Fritz. 2023. Not what you’ve signed up for: Compromising
Real-World LLM-Integrated Applications with Indirect Prompt Injection. arXiv
preprint arXiv:2302.12173 (2023).

[6] Yi Liu et al. 2024. Prompt Injection Attack Against LLM-Integrated Applications.
In Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communi-
cations Security.

[7] Ben Nassi et al. 2026. The Promptware Kill Chain: How Prompt Injections
Gradually Evolved Into a Multi-Step Malware. arXiv preprint arXiv:2601.09625
(2026).

[8] Fabián Perez and Ian Ribeiro. 2023. Ignore This Title andHackAPrompt: Exposing
Systemic Weaknesses of LLMs through a Global Scale Prompt Hacking Com-
petition. In Proceedings of the 2023 Conference on Empirical Methods in Natural

Language Processing. 4945–4977.
[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. Advances in Neural Information Processing Systems 30 (2017).

[10] Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019.
Universal Adversarial Triggers for Attacking and Analyzing NLP. Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing (2019).

[11] Simon Willison. 2023. Prompt injection: What’s the worst that can happen?
simonwillison.net (2023).

[12] Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. 2023. Universal and
Transferable Adversarial Attacks on Aligned Language Models. arXiv preprint
arXiv:2307.15043 (2023).

4

	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Threat Model
	2.2 Dual-Channel Token Tagging
	2.3 Hierarchical Trust Embedding
	2.4 Gated Execution Boundary
	2.5 Attack Simulation
	2.6 Baseline Defenses
	2.7 Statistical Analysis

	3 Results
	3.1 Experiment 1: Dual-Channel Separation Quality
	3.2 Experiment 2: Hierarchical Trust Embedding
	3.3 Experiment 3: Gated Execution Boundary
	3.4 Experiment 4: Robustness Sweep
	3.5 Experiment 5: Combined Defense Analysis

	4 Discussion
	4.1 Limitations

	5 Conclusion
	References

