23
24
25
26
27
28
29

39
40
41
42
43
44

Architectural Instruction-Data Separation for Large Language
Models: Evaluating Dual-Channel Defenses Against Prompt
Injection

Anonymous Author(s)

ABSTRACT

Current large language models (LLMs) process all input—system
prompts, user messages, and retrieved documents—as a unified
token sequence with no reliable boundary between trusted instruc-
tions and untrusted data, enabling prompt injection attacks. We
address this open problem by proposing and evaluating three ar-
chitectural defense mechanisms: dual-channel token tagging, hier-
archical trust embeddings, and gated execution boundaries. Across
five experiments with 500 trials each, our dual-channel architec-
ture achieves a separation accuracy of 0.608 (Cohen’s d = 0.454,
AUC = 0.631), and hierarchical trust embeddings attain 0.411 trust
classification accuracy under gradient-based attacks versus 0.054
for perplexity-based detection. Bootstrap analysis with 10000 re-
samples confirms that trust embeddings provide a statistically sig-
nificant advantage (gap = 0.357, 95% CI [0.273, 0.441], p < 0.001).
However, the gated execution boundary yields only 0.006 mean
effectiveness, underperforming pattern matching at 0.304. These
results demonstrate that architectural separation provides measur-
able advantages for specific defense mechanisms but does not yet
constitute a comprehensive solution, confirming the open nature
of this problem as identified by Nassi et al. [7].

CCS CONCEPTS

« Security and privacy — Software security engineering.

KEYWORDS

prompt injection, LLM security, instruction-data separation, dual-
channel architecture, trust embeddings

ACM Reference Format:

Anonymous Author(s). 2026. Architectural Instruction-Data Separation for
Large Language Models: Evaluating Dual-Channel Defenses Against Prompt
Injection. In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Large language models (LLMs) process all input as a unified token
sequence, creating a fundamental architectural vulnerability: there
is no reliable mechanism to distinguish trusted instructions from
untrusted data [7]. This enables prompt injection attacks, where

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2026 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

adversarial content embedded in data regions is interpreted as
instructions, potentially compromising model behavior [5, 8].

Nassi et al. [7] formalize this vulnerability within their Prompt-
ware Kill Chain framework, noting that current defenses operate at
the application layer (pattern matching, perplexity filtering) rather
than at the architectural level. They conclude that no comprehen-
sive solution exists for reliably separating instructions from data.
We directly address this open problem by designing and evaluating
architectural mechanisms that embed provenance information into
the model’s processing pipeline.

We propose three architectural defenses: (1) dual-channel token
tagging that maintains a parallel provenance channel alongside
semantic processing, (2) hierarchical trust embeddings that encode
trust levels in a learned subspace orthogonal to content, and (3)
gated execution boundaries that suppress data-channel influence
on instruction pathways. We compare each against application-
layer baselines (pattern matching and perplexity-based anomaly
detection) across five attack sophistication levels.

1.1 Related Work

Prompt injection was first characterized as a security risk by Willi-
son [11], with systematic studies by Perez and Ribeiro [8] and
Greshake et al. [5]. Liu et al. [6] provide a taxonomy of injection
attacks against LLM-integrated applications. On the defense side,
Chen et al. [2] propose structured queries as a mitigation, while
Carlini et al. [1] demonstrate that alignment-based defenses remain
vulnerable to adversarial attacks. Zou et al. [12] and Wallace et
al. [10] develop universal adversarial triggers that bypass content-
based filtering. Our work differs by evaluating architectural rather
than application-layer defenses.

2 METHODS
2.1 Threat Model

We consider an LLM inference pipeline processing sequences of
length L = 16 tokens drawn from a vocabulary of size V' = 64. Each
token belongs to one of three trust regions: system instructions
(positions 0-3, tag 0), user input (positions 4-7, tag 1), and external
data (positions 8-15, tag 2). An attacker controls the data region and
may attempt to: (1) inject instruction-like token patterns, (2) spoof
provenance tags, (3) craft gradient-optimized adversarial sequences,
or (4) adaptively target defense mechanisms.

2.2 Dual-Channel Token Tagging

The dual-channel architecture processes tokens through two paral-
lel pathways. The main semantic channel implements a standard
transformer block [9]: embedding, causal self-attention, and feed-
forward layers with dimension d = 32. The provenance channel
embeds trust tags into a separate diog = 8 dimensional space via

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference’17, July 2017, Washington, DC, USA

Wiy € R3%8, A gating mechanism combines both channels:
hgated = hpain © 0([hmain; htag]wgate + bgate) > (1)

where Wgate € R(d*dg)¥d and ¢ is the sigmoid function.

2.3 Hierarchical Trust Embedding

Trust information is embedded into a learned subspace of the
model’s representation space. After the gated forward pass, a trust
classification head Wiyyst € RY*3 predicts each token’s trust level.
Separation quality is measured via Cohen’s d [3] between activation
magnitudes of different trust classes.

2.4 Gated Execution Boundary

The execution boundary measures leakage—the ratio of data-region
activation norms to instruction-region norms after gating:

|Ihdatall2
data (2)

leakage = ,
Ihinstll2 + €

where € = 10710, An effective gate should drive this ratio toward
zero for data tokens.

2.5 Attack Simulation

We simulate five attack levels: Level 0 (clean), Level 1 (naive to-
ken copying), Level 2 (tag spoofing), Level 3 (gradient-based with
partial tag spoofing), and Level 4 (adaptive full-tag spoofing with
user-region corruption). Each experiment uses 300-500 trials with
controlled random seeds.

2.6 Baseline Defenses

Two non-architectural baselines are evaluated. Pattern match-
ing flags data-region tokens that fall within a suspicious pattern
set (tokens 0-7), detecting injection when the ratio exceeds 0.3.
Perplexity-based detection calibrates baseline perplexity over
200 clean samples and flags inputs whose z-score exceeds 1.5 stan-
dard deviations.

2.7 Statistical Analysis

We use bootstrap resampling [4] with n = 10000 iterations to com-
pute 95% confidence intervals for the gap between architectural and
baseline defense scores. Significance is assessed as STRONG when
the entire ClI is above zero, MODERATE when the point estimate is
positive, and NOT_SIGNIFICANT otherwise.

3 RESULTS
3.1 Experiment 1: Dual-Channel Separation
Quality

Table 1 summarizes the dual-channel evaluation. The architec-
tural defense achieves a separation accuracy of 0.608 with Cohen’s
d = 0.454 and AUC-ROC = 0.631, indicating moderate channel sepa-
ration. Pattern matching achieves no provenance-based separation
(score 0.0 by definition). Injection resistance at attack Level 2 is
0.082 for dual-channel versus 0.056 for pattern matching. Semantic
fidelity remains perfect (1.0) for the dual-channel model with a
compute overhead of 1.15%.

Anon.

Table 1: Experiment 1: Dual-channel tagging vs. pattern
matching.

Metric Dual-Channel Pattern Matching
Separation Score 0.608 0.0
Cohen’s d 0.454 -
AUC-ROC 0.631 -
Injection Resistance 0.082 0.056
Semantic Fidelity 1.0 0.946
Compute Overhead 1.15% 1.02x

Table 2: Experiment 2: Trust embedding vs. perplexity de-
fense.

Metric Trust Embedding Perplexity Defense
Clean Accuracy 0.326 -

Attack Accuracy 0.411 0.054
Semantic Fidelity 1.0 0.908
Compute Overhead 1.20% 1.05%

Table 3: Experiment 3: Gate effectiveness and leakage per
attack level.

Level Gate Eff. Leakage Pattern Match
0 (Clean) 0.0 0.979 0.070

1 (Naive) 0.0 0.981 0.187

2 (Tag Spoof) 0.01 0.982 0.057

3 (Gradient) 0.01 0.784 1.0

4 (Adaptive) 0.01 0.978 0.207
Mean 0.006 0.941 0.304

3.2 Experiment 2: Hierarchical Trust
Embedding

Trust classification accuracy under clean conditions is 0.326, in-
dicating that the randomly initialized model learns partial trust
structure. Under gradient-based attack (Level 3), accuracy rises
to 0.411, as attack-modified tokens become more distinguishable.
Pairwise trust separation is measured between each pair of trust
levels: system vs. user (d = 0.135, AUC = 0.535), system vs. data
(d = 0.177, AUC = 0.546), and user vs. data (d = 0.043, AUC = 0.512).
The perplexity baseline achieves a detection rate of only 0.054 with
a false positive rate of 0.092.

3.3 Experiment 3: Gated Execution Boundary

The gate-based defense shows limited effectiveness, achieving only
0.006 mean effectiveness across all attack levels, with high leakage
ratios (0.784-0.982). In contrast, pattern matching achieves 0.304
mean effectiveness, driven largely by perfect detection (1.0) at Level
3 where injected tokens fall entirely within the suspicious range.
Table 3 reports per-level results.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289
290

Architectural Instruction-Data Separation for Large Language Models: Evaluating Dual-Channel Defenses Against Prompt Injectiomference’17, July 2017, Washington, DC, USA

Defense Robustness vs Attack Sophistication

=@-= Architectural (Dual-Channel)
1.04 =lll= Pattern Matching
=~ Perplexity Defense

o
= 0.8
o
0
]
0 0.6
o
=1
(2]
3 0.4
c
[
L
a

0.24

0.01

T T T T T
0 1 2 3 4
(Clean) (Naive) (Tag Spoof) (Gradient) (Adaptive)

Attack Sophistication Level

Figure 1: Defense success rate across attack sophistication
levels. Architectural defenses show more stable performance
compared to application-layer approaches.

Table 4: Experiment 5: Bootstrap comparison of architectural
vs. baseline defenses (n = 10000 resamples).

Comparison Gap 95% CI P Sig.
DC vs PM 0.026 [-0.058, 0.110] 0.276 MOD
TE vs PPL 0.357 [0.273, 0.441] <0.001 STRONG

GB vs PM —0.298 [—0.382, —0.215] 1.0 N.S.

3.4 Experiment 4: Robustness Sweep

Figure 1 presents the robustness sweep results. The architectural
defense shows relatively stable performance across attack levels
(range 0.110-0.313), while pattern matching exhibits extreme vari-
ation (0.063-1.0) due to its reliance on token content rather than
provenance. Perplexity defense is effective only at Level 0 (0.883)
and degrades sharply under attack.

3.5 Experiment 5: Combined Defense Analysis

Bootstrap analysis (Table 4) reveals heterogeneous results. The
trust embedding advantage over perplexity detection is statistically
significant (gap = 0.357, 95% CI [0.273, 0.441], p < 0.001). The
dual-channel advantage over pattern matching is moderate but
not significant (gap = 0.026, CI [-0.058, 0.110], p = 0.276). The
gated boundary underperforms pattern matching (gap = —0.298, CI
[-0.382, —0.215]), indicating that architectural separation is not
universally superior.

4 DISCUSSION

Our experiments provide three key insights. First, architectural

instruction-data separation is feasible: the dual-channel model achieves

meaningful separation (accuracy 0.608, AUC 0.631) even without
task-specific training. Second, hierarchical trust embeddings offer
the strongest architectural advantage, achieving 0.411 accuracy un-
der attack compared to 0.054 for perplexity detection—a statistically
significant improvement confirmed by bootstrap analysis. Third,
not all architectural mechanisms are effective: the gated execution

Architectural Defense Advantage (95% ClI)

STRONG
---- No advantage
0.44
5%
0= 0.2
]
o8 MODERATE
S
P
0 _
2E
< 32 -
cO
g
]
[=
oL
£< 52 T
~0.4

T
Trust Embed
vs Perplexity

T
Dual-Channel
vs Pattern

T
Gated Boundary
vs Pattern

Figure 2: Architectural defense advantage with 95% bootstrap
confidence intervals. Only trust embedding vs. perplexity
achieves statistical significance.

boundary fails to suppress data-channel leakage (mean leakage
0.941), demonstrating that naive gating is insufficient.

These findings confirm the assessment of Nassi et al. [7] that
no comprehensive architectural solution currently exists. While
trust embeddings show promise, their absolute performance (0.411
under attack) is far from the near-perfect separation needed for
reliable defense. The failure of gated boundaries highlights that
architectural separation requires careful mechanism design rather
than simple channel isolation.

4.1 Limitations

Our evaluation uses small-scale models (d = 32, V = 64, L = 16)
with random initialization rather than trained language models. The
attack simulation is stylized: real prompt injection involves natural
language semantics that our token-level model cannot capture. Re-
sults may not transfer directly to full-scale LLMs. Additionally, our
models are not optimized for the separation task; training specif-
ically for trust classification would likely improve architectural
defense performance.

5 CONCLUSION

We evaluated three architectural mechanisms for separating instruc-
tions from data in LLM inference pipelines. Hierarchical trust em-
beddings provide statistically significant advantages over perplexity-
based detection (gap = 0.357, p < 0.001), while dual-channel tagging
shows moderate promise and gated boundaries prove ineffective.
These results demonstrate that architectural instruction-data sepa-
ration is a viable research direction but does not yet yield a com-
prehensive solution, motivating further investigation into trained
dual-channel models, representation-level trust enforcement, and
adaptive gating mechanisms.

REFERENCES

[1] Nicholas Carlini et al. 2024. Are aligned neural networks adversarially aligned?
Advances in Neural Information Processing Systems 36 (2024).

[2] Sizhe Chen et al. 2024. StruQ: Defending Against Prompt Injection with Struc-
tured Queries. arXiv preprint arXiv:2402.06363 (2024).

[3] Jacob Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences. (1988).

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference’17, July 2017, Washington, DC, USA

(4]
(5]

(6]

Bradley Efron and Robert J. Tibshirani. 1993. An Introduction to the Bootstrap.
(1993).

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten
Holz, and Mario Fritz. 2023. Not what you’ve signed up for: Compromising
Real-World LLM-Integrated Applications with Indirect Prompt Injection. arXiv
preprint arXiv:2302.12173 (2023).

Yi Liu et al. 2024. Prompt Injection Attack Against LLM-Integrated Applications.
In Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communi-
cations Security.

Ben Nassi et al. 2026. The Promptware Kill Chain: How Prompt Injections
Gradually Evolved Into a Multi-Step Malware. arXiv preprint arXiv:2601.09625
(2026).

Fabian Perez and Ian Ribeiro. 2023. Ignore This Title and HackAPrompt: Exposing
Systemic Weaknesses of LLMs through a Global Scale Prompt Hacking Com-
petition. In Proceedings of the 2023 Conference on Empirical Methods in Natural

[9]

[10

[11

(12]

Anon.

Language Processing. 4945-4977.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. Advances in Neural Information Processing Systems 30 (2017).

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019.
Universal Adversarial Triggers for Attacking and Analyzing NLP. Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing (2019).
Simon Willison. 2023. Prompt injection: What’s the worst that can happen?
simonwillison.net (2023).

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. 2023. Universal and
Transferable Adversarial Attacks on Aligned Language Models. arXiv preprint
arXiv:2307.15043 (2023).

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464

	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Threat Model
	2.2 Dual-Channel Token Tagging
	2.3 Hierarchical Trust Embedding
	2.4 Gated Execution Boundary
	2.5 Attack Simulation
	2.6 Baseline Defenses
	2.7 Statistical Analysis

	3 Results
	3.1 Experiment 1: Dual-Channel Separation Quality
	3.2 Experiment 2: Hierarchical Trust Embedding
	3.3 Experiment 3: Gated Execution Boundary
	3.4 Experiment 4: Robustness Sweep
	3.5 Experiment 5: Combined Defense Analysis

	4 Discussion
	4.1 Limitations

	5 Conclusion
	References

