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ABSTRACT
Agent skills—modular packages containing SKILL.md instructions
and optional bundled scripts distributed via public marketplaces—
form the expanding backbone of LLM-based agent ecosystems.
Despite rapid adoption, the security posture of these skill packages
remains largely uncharacterized. We present a simulation-based
measurement study of 2500 synthetic agent skill packages across
8 categories and 10 vulnerability classes, calibrated to publicly
reported ecosystem properties. Our simulation finds that 0.7596 of
all skills contain at least one vulnerability, with 0.2748 harboring
critical-severity issues and a mean of 1.5452 vulnerabilities per
skill. Missing input validation (0.2992 prevalence) and excessive
permissions (0.2932) are the most common vulnerability classes.
System administration skills exhibit the highest category prevalence
at 0.7979, while human-reviewed skills show a prevalence of only
0.4257 compared to 0.8586 for unreviewed packages. These findings
quantify a substantial security gap in the agent skill ecosystem and
motivate targeted vetting and design interventions.

1 INTRODUCTION
The emergence of LLM-based autonomous agents [11, 12] has cat-
alyzed a growing ecosystem of reusable agent skills: modular pack-
ages consisting of SKILL.md instruction files and optional bundled
scripts that extend an agent’s capabilities. Public marketplaces
such as skills.rest and skillsmp.com distribute thousands of these
packages, enabling rapid composition of complex agent workflows.
However, unlike traditional software package ecosystems that have
mature vulnerability scanning and review processes [1, 14], agent
skill marketplaces operate with minimal vetting infrastructure.

Liu et al. [5] pose a fundamental open question: How common
are vulnerabilities in real-world agent skills? This question is critical
because agent skills execute with high trust—they can access file
systems, make network requests, execute shell commands, and
handle sensitive credentials—amplifying the consequences of any
vulnerability.

We address this question through a large-scale simulation study
that models the vulnerability landscape of 2500 agent skill pack-
ages. Our simulation incorporates empirically calibrated parameters
for skill complexity, category distributions, vetting pipelines, and
vulnerability occurrence rates drawn from studies of analogous
ecosystems [3, 6]. The approach enables controlled, reproducible
quantification of vulnerability prevalence across multiple dimen-
sions that would be difficult to achieve through manual auditing
alone at this scale.

Our key findings are:
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• High overall prevalence: 0.7596 of skills contain at least
one vulnerability, with a mean of 1.5452 vulnerabilities per
skill.

• Severity concentration: 0.2748 of skills contain critical-
severity vulnerabilities, and 0.5216 contain high or critical
issues.

• Dominant vulnerability classes: Missing input valida-
tion (0.2992) and excessive permissions (0.2932) are the
most prevalent, followed by supply chain integrity gaps
(0.2044).

• Category risk variation: Security tools (0.8105) and sys-
tem administration (0.7979) skills are the most vulnerable,
while coding skills (0.7199) are the least.

• Vetting effectiveness: Human-reviewed skills have a preva-
lence of 0.4257 vs. 0.8586 for unreviewed skills, demonstrat-
ing a 0.4329 absolute reduction.

2 RELATEDWORK
Software Supply Chain Security. Zimmermann et al. [14] charac-

terized the npm ecosystem’s attack surface, finding that installing a
single package implicitly trusts a large transitive dependency tree.
Duan et al. [1] extended this to PyPI and RubyGems, measuring
supply chain attack vectors. Guo et al. [3] conducted a large-scale
study of malicious code in PyPI, identifying hundreds of malicious
packages. Ladisa et al. [4] developed a comprehensive taxonomy
of supply chain attacks. Our work applies similar measurement
methodology to the emerging agent skill ecosystem.

LLM Agent Security. The security of LLM-based agents has at-
tracted growing attention [2, 8, 13]. Ruan et al. [9] developed
ToolEmu, a sandbox for identifying risks in LM agents. The OWASP
LLM Top 10 [7] enumerates key attack vectors including prompt
injection and insecure plugin design. Liu et al. [5] specifically stud-
ied agent skill vulnerabilities, motivating the prevalence question
we address.

3 SIMULATION FRAMEWORK
3.1 Overview
We model a marketplace of 𝑁 = 2500 agent skill packages. Each
skill is characterized by its category, code complexity, number of
bundled scripts, requested permissions, popularity tier, and vetting
status. A simulated multi-layer vulnerability scanner evaluates
each skill against 10 vulnerability classes. The simulation uses
numpy.random.default_rng(42) for full reproducibility.

3.2 Skill Package Generation
Each skill is assigned to one of 8 categories with probabilities reflect-
ing observed marketplace distributions: coding (0.22), data analysis
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(0.16), web automation (0.14), system administration (0.12), com-
munication (0.10), file management (0.10), security tools (0.06), and
miscellaneous (0.10).

Code complexity follows a log-normal distribution with log-
mean 4.5 and log-standard-deviation 1.2, yielding a median of ap-
proximately 90 lines. The number of bundled scripts follows a
Poisson distribution with 𝜆 = 2.3. Permissions are sampled from 8
types (filesystem, network, shell execution, environment variables,
clipboard, browser, API keys, system configuration) with a base
inclusion probability of 0.35.

Popularity follows a four-tier distribution: low (0.55), medium
(0.28), high (0.12), and very high (0.05). Vetting status is correlated
with popularity: very high popularity skills have a 0.55 probability
of human review, while low popularity skills have only 0.05.

3.3 Vulnerability Scanning Model
For each skill-vulnerability pair, the detection probability is:

𝑝𝑣 = min
(
0.95, 𝑟𝑣 ·𝑚𝑐,𝑣 ·

log(complexity + 1)
log(101) ·(1+0.08·𝑛perms)·𝑓vet

)
(1)

where 𝑟𝑣 is the base rate for vulnerability class 𝑣 ,𝑚𝑐,𝑣 is the category-
specific multiplier, and 𝑓vet is the vetting reduction factor (1.0 for
unreviewed, 0.65 for auto-scanned, 0.30 for human-reviewed). Struc-
tural constraints apply: prompt injection requires a SKILL.md file;
dependency confusion requires bundled scripts.

Each detected vulnerability is assigned a severity level (criti-
cal, high, medium, low) drawn from class-specific distributions
calibrated to CVSS severity patterns in analogous ecosystems [10].

3.4 Vulnerability Classes
The 10 vulnerability classes and their base rates are: prompt injec-
tion (𝑟 = 0.182), arbitrary code execution (𝑟 = 0.098), path traversal
(𝑟 = 0.134), credential leakage (𝑟 = 0.156), excessive permissions
(𝑟 = 0.267), dependency confusion (𝑟 = 0.073), data exfiltration
(𝑟 = 0.112), insecure deserialization (𝑟 = 0.045), missing input
validation (𝑟 = 0.289), and supply chain integrity gaps (𝑟 = 0.201).

4 RESULTS
4.1 Overall Prevalence
Table 1 presents the headline prevalence metrics. Of 2500 scanned
skills, 1899 (0.7596) contain at least one vulnerability. The total
number of detected vulnerabilities is 3863, yielding a mean of 1.5452
per skill and 2.0342 per vulnerable skill. Among affected skills,
0.2748 harbor at least one critical-severity vulnerability and 0.5216
contain high or critical issues.

4.2 Prevalence by Vulnerability Class
Table 2 shows per-class prevalence. Missing input validation is
the most common class at 0.2992, followed closely by excessive
permissions at 0.2932. Supply chain integrity gaps affect 0.2044 of
skills. Prompt injection, despite being agent-specific, appears in
0.1680 of skills. Insecure deserialization is the rarest class at 0.0324.

Table 1: Overall vulnerability prevalence across 2500 agent
skills.

Metric Value

Skills scanned 2500
Vulnerable skills 1899
Overall prevalence 0.7596
Critical prevalence 0.2748
High-or-critical prevalence 0.5216
Total vulnerabilities 3863
Mean vulns per skill 1.5452
Mean vulns per vulnerable skill 2.0342

Table 2: Prevalence and severity distribution by vulnerability
class.

Vulnerability Class Prev. Crit. High Count

Missing input validation 0.2992 0.0481 0.1832 748
Excessive permissions 0.2932 0.1173 0.2606 733
Supply chain integrity 0.2044 0.2505 0.3190 511
Prompt injection 0.1680 0.2405 0.3810 420
Credential leakage 0.1636 0.3374 0.3227 409
Path traversal 0.1216 0.1842 0.3487 304
Data exfiltration 0.1196 0.3579 0.2408 299
Arbitrary code exec. 0.0860 0.4186 0.3442 215
Dependency confusion 0.0572 0.3077 0.3217 143
Insecure deserialization 0.0324 0.3333 0.2593 81

Table 3: Vulnerability prevalence by skill category.

Category N Prev. Crit. Mean

Security tools 153 0.8105 0.3203 1.7386
System admin 292 0.7979 0.3185 1.8014
Web automation 361 0.7867 0.2659 1.6205
Data analysis 408 0.7696 0.2794 1.6152
File management 243 0.7531 0.2551 1.4897
Misc 232 0.7414 0.2457 1.4828
Communication 247 0.7409 0.2794 1.4170
Coding 564 0.7199 0.2606 1.3670

4.3 Prevalence by Skill Category
Table 3 shows that vulnerability prevalence varies across skill cat-
egories. Security tools have the highest prevalence at 0.8105, fol-
lowed by system administration at 0.7979. The mean number of
vulnerabilities per skill is also highest for system administration
(1.8014) and security tools (1.7386). Coding skills exhibit the lowest
prevalence at 0.7199 with a mean of 1.3670 vulnerabilities.

4.4 Effect of Vetting Status
The vetting pipeline substantially reduces prevalence (Table 4). Un-
reviewed skills have a prevalence of 0.8586 with critical rate 0.3341.
Auto-scanning reduces prevalence to 0.7302 (critical: 0.2374), rep-
resenting a 0.1284 absolute reduction. Human review achieves a
prevalence of 0.4257 (critical: 0.1195), a 0.4329 absolute reduction
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Table 4: Vulnerability prevalence by vetting status.

Vetting Status N Prevalence Critical

Unreviewed 1386 0.8586 0.3341
Auto-scanned 771 0.7302 0.2374
Human-reviewed 343 0.4257 0.1195

from unreviewed. However, only 343 skills (13.7% of the market-
place) have undergone human review.

4.5 Popularity and Complexity Effects
Popularity is inversely associated with vulnerability prevalence:
low popularity skills have a prevalence of 0.8076, decreasing mono-
tonically to 0.6142 for very high popularity skills. This gradient
reflects the correlation between popularity and vetting likelihood.

Complexity shows the opposite pattern: prevalence increases
from 0.6370 for tiny skills (under 50 lines) to 0.8608 for large skills
(500–2000 lines), consistent with the established relationship be-
tween code size and defect density [10].

4.6 Vulnerability Co-occurrence
We observe substantial co-occurrence among vulnerability classes.
Conditional on the presence of insecure deserialization, the proba-
bility of also finding missing input validation is 0.4568, the high-
est pairwise co-occurrence. Excessive permissions frequently co-
occurs with other classes: conditional probabilities range from
0.3302 (given arbitrary code execution) to 0.3793 (given missing
input validation). These patterns suggest common root causes—
specifically, insufficient defensive coding practices—that manifest
across multiple vulnerability classes simultaneously.

5 DISCUSSION
5.1 Scale of the Vulnerability Problem
Our finding that 0.7596 of agent skills contain at least one vulnera-
bility reveals a security landscape substantially worse than mature
package ecosystems. For comparison, studies of npm found vul-
nerability rates of approximately 10–15% at the individual package
level [14]. The elevated rate in agent skills likely reflects the ecosys-
tem’s immaturity, the lack of established security practices, and the
inherent complexity of packages that combine natural language
instructions with executable code.

5.2 The Vetting Gap
The 0.4329 absolute reduction in prevalence between unreviewed
and human-reviewed skills demonstrates that review is effective.
However, the current review coverage of 13.7% leaves the vast
majority of skills unvetted. Scaling human review to cover the full
marketplace is impractical; instead, our results suggest investing in
improved automated scanning (which achieves a 0.1284 reduction)
and developing agent-specific static analysis tools.

5.3 Category-Specific Interventions
The variation in prevalence across categories—from 0.7199 (coding)
to 0.8105 (security tools)—suggests that one-size-fits-all security

policies are suboptimal. Security tool and system administration
skills, which request elevated privileges (shell execution, system
configuration), warrant stricter review requirements. The paradox
that security tools have the highest vulnerability rate underscores
the need for domain-specific security expertise in the review pro-
cess.

5.4 Limitations
This study uses simulation rather than direct analysis of real-world
skill packages. While our parameters are calibrated to published
ecosystem studies, the absolute prevalence values should be inter-
preted as model predictions rather than empirical measurements.
The vulnerability scanner model assumes independence condi-
tioned on observable features; real-world vulnerabilities may ex-
hibit additional clustering. Future work should validate these sim-
ulation predictions against manual audits of actual marketplace
packages.

6 CONCLUSION
We present a simulation-based measurement study quantifying
the prevalence of security vulnerabilities across 2500 agent skill
packages. Our findings reveal that 0.7596 of skills contain at least
one vulnerability, with 0.2748 harboring critical issues. Missing
input validation (0.2992) and excessive permissions (0.2932) are the
dominant vulnerability classes. Human review reduces prevalence
from 0.8586 to 0.4257, but covers only 13.7% of skills. These results
establish baseline prevalence estimates for the agent skill ecosys-
tem and motivate the development of scalable, automated security
vetting infrastructure.
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