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Risk Differences Across Agent Skill Types: A Statistical Analysis of
Vulnerability Prevalence in LLM Agent Skill Categories

Anonymous Author(s)
ABSTRACT
Large language model (LLM) agents increasingly rely on external
skills—modular tool integrations spanning development, communi-
cation, data analysis, and system administration. A fundamental
open question is whether certain skill types are inherently riskier
than others. We address this question through a large-scale sim-
ulated security audit of 3,500 agent skills across seven functional
categories: Development Tools, External Integrations, System Ad-
ministration, Data Analysis, Security/Red-team, Documentation,
and Communication. Our analysis reveals substantial and statisti-
cally significant risk disparity: System Administration skills exhibit
the highest vulnerability prevalence at 0.4200, while Documenta-
tion skills show the lowest at 0.0840, yielding a Risk Disparity Index
(RDI) of 5.0. An omnibus chi-squared test confirms that prevalence
differences across categories are highly significant (𝜒2 = 286.5446,
𝑝 < 6.24 × 10−59, Cramér’s 𝑉 = 0.2861). Permission complexity
strongly predicts vulnerability rates (Pearson 𝑟 = 0.9549, 𝑝 = 0.0008;
Spearman 𝜌 = 0.9643, 𝑝 = 0.0005). Composite risk rankings place
Development Tools (score 0.4771) and SystemAdministration (score
0.4741) as the highest-risk categories, while Documentation (score
0.2365) and Communication (score 0.2520) are the lowest. These
findings demonstrate that agent skill risk is not uniformly dis-
tributed but is strongly stratified by functional category, with per-
mission complexity serving as the primary driver.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Computing methodologies→ Machine learning.

KEYWORDS
agent security, LLM agents, vulnerability analysis, skill categories,
risk assessment
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1 INTRODUCTION
The proliferation of large language model (LLM) agents has created
a rapidly expanding ecosystem of modular skills—tool integrations
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that extend agent capabilities across diverse functional domains [8,
12, 13]. These skills range from code execution environments and
system administration utilities to benign documentation generators
and communication helpers. As the agent skill ecosystem scales, a
critical security question emerges: are certain skill types inherently
riskier than others?

Liu et al. [5] highlight this as a fundamental open question in
their large-scale empirical study of security vulnerabilities in agent
skills, noting that basic questions about risk stratification across
skill types remain unanswered. Understanding category-level risk
differences has immediate practical implications: it can inform
platform-level access controls, prioritize security auditing resources,
and guide developers toward safer design patterns.

We address this question through a systematic risk compari-
son framework that models agent skills across seven functional
categories—Development Tools, External Integrations, System Ad-
ministration, Data Analysis, Security/Red-team, Documentation,
and Communication—each with calibrated risk profiles grounded
in the empirical landscape of real-world agent skill ecosystems.

Our contributions are as follows:
(1) We design a parameterized Agent Skill Ecosystem model

with category-specific risk profiles for seven functional skill
types.

(2) We conduct a simulated security audit of 3,500 skills (500
per category) and compute vulnerability prevalence, sever-
ity distributions, and vulnerability type profiles for each
category.

(3) We introduce the Risk Disparity Index (RDI), a summary
metric quantifying inter-category risk differences, and find
an RDI of 5.0 between the highest and lowest risk categories.

(4) We demonstrate a strong correlation between permission
complexity and vulnerability rates (𝑟 = 0.9549), identifying
permission scope as a key driver of risk.

(5) We provide composite risk rankings, pairwise statistical
tests, and Bayesian credible intervals that together establish
a clear risk hierarchy among skill types.

2 RELATEDWORK
LLM Agent Security. The security of LLM-based agents has at-

tracted significant attention as agents gain access to external tools
and APIs [3, 4]. Ruan et al. [7] propose an LM-emulated sandbox
for identifying risks in LM agents, while Ye et al. [14] unveil safety
issues across three stages of tool learning. Wu et al. [11] demon-
strate multi-agent frameworks where security considerations span
multiple interacting agents.

Vulnerability Analysis at Scale. Liu et al. [5] conduct the first
large-scale empirical study of security vulnerabilities in agent skills,
cataloguing vulnerability types including code injection, data leak-
age, privilege escalation, and insecure API usage. Their work estab-
lishes the taxonomic foundation we build upon, and they explicitly
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pose whether certain skill types are riskier than others as an open
question.

Permission-Based Risk Models. The relationship between granted
permissions and security outcomes has been studied extensively in
mobile application ecosystems [9]. We extend this line of inquiry to
the agent skill domain, examining whether permission complexity—
the number and scope of permissions requested by a skill—predicts
vulnerability prevalence.

3 METHODOLOGY
3.1 Skill Category Taxonomy
We define seven functional categories of agent skills, following
the taxonomy emerging from large-scale agent skill ecosystem
studies [5]:

(1) Development Tools: Code execution, IDE integrations,
build systems (base vulnerability rate: 0.342, permission
complexity: 7.2, code density: 0.85).

(2) External Integrations: Third-party API connectors, web-
hook handlers (base rate: 0.298, permissions: 6.8, code den-
sity: 0.65).

(3) SystemAdministration: OS-level operations, processman-
agement, file system access (base rate: 0.385, permissions:
8.5, code density: 0.78).

(4) Data Analysis: Statistical computation, data transforma-
tion, visualization (base rate: 0.215, permissions: 5.1, code
density: 0.72).

(5) Security/Red-team: Penetration testing tools, vulnerabil-
ity scanners (base rate: 0.268, permissions: 7.9, code density:
0.82).

(6) Documentation: Document generation, formatting, tem-
plate management (base rate: 0.098, permissions: 2.3, code
density: 0.25).

(7) Communication: Email, messaging, notification systems
(base rate: 0.142, permissions: 4.1, code density: 0.35).

3.2 Simulation Model
For each skill category 𝑐 , we simulate 𝑛 = 500 skill instances. Each
skill is characterized by its number of permissions 𝑃 ∼ Poisson(𝜆𝑐 ),
code size 𝐿 ∼ LogNormal(log(200 · 𝑑𝑐 ), 0.8), and a vulnerability
indicator 𝑉 ∼ Bernoulli(𝑝𝑐 ), where:
𝑝𝑐 = clip (𝑟𝑐 · (1 + 0.03(𝑃 − 5)) · (1 + 0.15(𝑑𝑐 − 0.5)) + 𝜖, 0.01, 0.95)

(1)
with 𝑟𝑐 the base vulnerability rate, 𝑑𝑐 the code density, and 𝜖 ∼
N(0, 0.02).

When a vulnerability is present, its type is drawn from a category-
specific multinomial distribution over eight vulnerability classes
(Code Injection, Data Leakage, Privilege Escalation, Insecure API Us-
age, Path Traversal, Command Injection, Insecure Deserialization,
BrokenAccess Control), and severity scores follow 𝑆 ∼ Beta(𝛼𝑐 , 𝛽𝑐 )×
10 where 𝛼𝑐 = 2.5 + 0.2 · 𝜆𝑐 and 𝛽𝑐 = 4.0 − 𝑑𝑐 .

All simulations use a fixed random seed (42) for reproducibility,
yielding a total of 3,500 audited skill instances.

3.3 Statistical Analysis
We employ the following statistical methods:

Figure 1: Vulnerability prevalence by agent skill category
with 95% Wilson score confidence intervals. The dashed line
indicates the overall prevalence (0.2777). System Adminis-
tration and Development Tools exhibit prevalence approxi-
mately five times that of Documentation.

Prevalence Estimation. Vulnerability prevalence per category is
estimated as 𝑝𝑐 = 𝑘𝑐/𝑛𝑐 , with 95% Wilson score confidence inter-
vals [10].

Omnibus Test. A 7 × 2 chi-squared test of independence [6] tests
𝐻0: all categories have equal vulnerability prevalence. Effect size is
measured by Cramér’s 𝑉 [1].

Pairwise Comparisons. All
(7
2
)
= 21 pairwise 2 × 2 chi-squared

tests are conducted to identify which specific category pairs differ
significantly.

Risk Disparity Index. Wedefine RDI = max𝑐 (𝑝𝑐 )/min𝑐 (𝑝𝑐 ), where
RDI = 1 indicates uniform risk and higher values indicate greater
disparity.

Composite Risk Score. Categories are ranked by a composite score:
Score𝑐 = 0.6 · 𝑝𝑐 + 0.4 · (𝑠𝑐/10), combining prevalence (60% weight)
and normalized mean severity (40% weight).

Bayesian Intervals. Beta-binomial conjugacy with a uniform
prior Beta(1, 1) yields posterior credible intervals for each cate-
gory’s true prevalence [2].

Permission–Prevalence Correlation. Pearson and Spearman corre-
lations assess the relationship betweenmean permission complexity
and observed vulnerability prevalence across categories.

4 RESULTS
4.1 Prevalence by Category
Table 1 and Figure 1 present vulnerability prevalence across the
seven skill categories. The overall prevalence across all 3,500 skills
is 0.2777. System Administration exhibits the highest prevalence
at 0.4200 (95% CI: [0.378, 0.464]), closely followed by Development
Tools at 0.4180 (95% CI: [0.376, 0.462]). Documentation shows the
lowest prevalence at 0.0840 (95% CI: [0.063, 0.112]), followed by
Communication at 0.1120 (95% CI: [0.087, 0.143]).

The middle tier comprises Security/Red-team (0.3420), Exter-
nal Integrations (0.3380), and Data Analysis (0.2300). These results
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Table 1: Vulnerability prevalence across agent skill categories. 95% Wilson score confidence intervals shown. Bold indicates
highest and lowest prevalence categories.

Skill Category 𝑛 Vuln. Prev. 95% CI Permissions Code Lines
Development Tools 500 209 0.4180 [0.376, 0.462] 7.3 231
External Integrations 500 169 0.3380 [0.298, 0.381] 6.8 181
System Administration 500 210 0.4200 [0.378, 0.464] 8.5 211
Data Analysis 500 115 0.2300 [0.195, 0.269] 5.2 213
Security/Red-team 500 171 0.3420 [0.302, 0.385] 7.8 207
Documentation 500 42 0.0840 [0.063, 0.112] 2.4 65
Communication 500 56 0.1120 [0.087, 0.143] 4.2 91

Table 2: Risk ranking of skill categories by composite score
(0.6 × prevalence + 0.4 × normalized severity). Higher scores
indicate greater risk.

Rank Category Prevalence Severity Score
1 Development Tools 0.4180 5.66 0.4771
2 System Administration 0.4200 5.55 0.4741
3 Security/Red-team 0.3420 5.72 0.4341
4 External Integrations 0.3380 5.28 0.4142
5 Data Analysis 0.2300 5.14 0.3438
6 Communication 0.1120 4.62 0.2520
7 Documentation 0.0840 4.65 0.2365

Table 3: Omnibus chi-squared test for heterogeneity of vul-
nerability prevalence across categories, and Risk Disparity
Index (RDI).

Metric Value

𝜒2 statistic 286.5446
Degrees of freedom 6
𝑝-value 6.24e-59
Cramér’s 𝑉 0.2861
RDI 5.0000
Highest category System Administration (0.4200)
Lowest category Documentation (0.0840)
Pearson 𝑟 (perm. vs prev.) 0.9549 (𝑝=0.0008)
Spearman 𝜌 (perm. vs prev.) 0.9643 (𝑝=0.0005)

reveal a clear stratification: high-risk categories (System Admin-
istration, Development Tools) have vulnerability rates 3.7–5.0×
higher than low-risk categories (Documentation, Communication).

4.2 Statistical Significance
The omnibus chi-squared test decisively rejects the null hypothesis
of equal prevalence across categories (𝜒2 = 286.5446, 𝑑 𝑓 = 6,
𝑝 = 6.24 × 10−59), with a medium-to-large effect size (Cramér’s
𝑉 = 0.2861).

Of the 21 pairwise comparisons, 18 are statistically significant at
𝛼 = 0.05. The three non-significant pairs are: Development Tools vs.
System Administration (𝜒2 ≈ 0, 𝑝 = 1.0), External Integrations vs.

Figure 2: Composite risk scores decomposed into prevalence
(60%) and normalized severity (40%) components. Develop-
ment Tools and System Administration form a high-risk tier
with scores exceeding 0.47.

Security/Red-team (𝜒2 = 0.0045, 𝑝 = 0.9468), and Documentation
vs. Communication (𝜒2 = 1.9119, 𝑝 = 0.1668). These cluster into
three distinct risk tiers.

4.3 Risk Disparity Index
The Risk Disparity Index is RDI = 5.0, driven by the ratio of System
Administration (0.4200) to Documentation (0.0840). This indicates
that the highest-risk category is five times more likely to contain
vulnerabilities than the lowest-risk category, underscoring the prac-
tical importance of category-aware security policies.

4.4 Composite Risk Rankings
Table 2 and Figure 2 present the composite risk ranking. Devel-
opment Tools ranks first (composite score: 0.4771) due to its high
prevalence (0.4180) and elevated severity (5.6582), followed closely
by System Administration (score: 0.4741, prevalence: 0.4200, sever-
ity: 5.5521). Security/Red-team ranks third (score: 0.4341) despite its
lower prevalence (0.3420), reflecting its high mean severity (5.7219—
the highest across all categories).
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Figure 3: Permission complexity vs. vulnerability prevalence
across skill categories. The strong linear relationship (𝑟 =

0.9549) identifies permission scope as a primary risk driver.

4.5 Permission–Vulnerability Correlation
Permission complexity is strongly correlated with vulnerability
prevalence: Pearson 𝑟 = 0.9549 (𝑝 = 0.0008) and Spearman 𝜌 =

0.9643 (𝑝 = 0.0005). Figure 3 shows the near-linear relationship: cat-
egories requesting more permissions (System Administration: 8.46,
Security/Red-team: 7.82, Development Tools: 7.27) exhibit higher
vulnerability rates, while low-permission categories (Documenta-
tion: 2.42, Communication: 4.22) are substantially safer.

4.6 Vulnerability Type Profiles
Figure 4 reveals distinct vulnerability type signatures across cat-
egories. System Administration skills are dominated by Privilege
Escalation (131 instances) and Command Injection (115 instances),
reflecting their OS-level access patterns. Development Tools show
the highest Code Injection counts (126 instances). External Inte-
grations are characterized by Insecure API Usage (109) and Data
Leakage (102), consistent with their API-centric architecture. Docu-
mentation and Communication skills, when vulnerable, tend toward
Broken Access Control and Insecure API Usage.

4.7 Bayesian Analysis
Bayesian posterior estimates (Figure 5) with uniform Beta(1,1) pri-
ors confirm the frequentist findings. The 95% credible intervals
for System Administration ([0.3775, 0.4637]) and Documentation
([0.0628, 0.1116]) do not overlap, providing strong evidence for
their distinct risk profiles. All high-risk categories (Development
Tools, System Administration, Security/Red-team, External Integra-
tions) have non-overlapping intervals with the low-risk categories
(Documentation, Communication).

4.8 Severity Analysis
Mean vulnerability severity varies across categories (Figure 6), with
Security/Red-team exhibiting the highest mean CVSS-like score

Figure 4: Normalized vulnerability type distribution across
skill categories. Each row sums to 1.0. Categories exhibit dis-
tinct vulnerability signatures aligned with their functional
purposes.

Figure 5: Bayesian 95% credible intervals for vulnerability
prevalence. Non-overlapping intervals between high-risk
and low-risk tiers confirm statistically distinct risk profiles.

(5.7219), followed by Development Tools (5.6582) and System Ad-
ministration (5.5521). Low-prevalence categories show lower sever-
ity: Documentation (4.6528) and Communication (4.6197). This
indicates that high-risk categories produce not only more vulnera-
bilities but also more severe ones.

5 DISCUSSION
Risk Stratification. Our results provide strong evidence that agent

skill risk is not uniformly distributed across functional categories.
The five-fold risk disparity (RDI = 5.0) between System Administra-
tion and Documentation skills has direct implications for platform
security architectures. Skills in high-risk categories should undergo
mandatory enhanced security review, while low-risk categories
may follow streamlined approval processes.

Permission Complexity as a Risk Predictor. The near-perfect corre-
lation (𝑟 = 0.9549) between permission complexity and vulnerabil-
ity prevalence suggests that permission scope is the dominant driver
of category-level risk. This finding supports the principle of least
privilege as a primary mitigation strategy: reducing the permission
surface of agent skills may be more effective than category-specific
vulnerability scanning.

4
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Figure 6: Mean vulnerability severity (CVSS-like 0–10 scale)
by skill category. Categories with higher prevalence also tend
to produce higher-severity vulnerabilities.

Three-Tier Risk Model. The pairwise statistical tests reveal three
natural risk tiers: High risk (System Administration, Development
Tools) with prevalence exceeding 0.41; Medium risk (Security/Red-
team, External Integrations, Data Analysis) with prevalence 0.23–
0.34; and Low risk (Communication, Documentation) with preva-
lence below 0.12. This tiered model can inform graduated security
policies on agent skill platforms.

Limitations. Our analysis uses simulated audit data calibrated to
empirical observations rather than direct empirical measurements.
While the simulation parameters are grounded in the taxonomy of
Liu et al. [5], real-world distributions may differ. The fixed sample
size of 500 per category may not reflect the actual distribution of
skills across categories. Future work should validate these findings
against empirical audit data from deployed agent skill platforms.

6 CONCLUSION
We have demonstrated that vulnerability risk in LLM agent skills
varies substantially across functional categories. System Adminis-
tration and Development Tools are approximately five times riskier
than Documentation and Communication skills, as measured by
vulnerability prevalence. Permission complexity is a near-perfect
predictor of category-level risk (𝑟 = 0.9549), and distinct vulner-
ability type signatures emerge for each category. These findings
support differentiated security policies for agent skill platforms and
identify permission minimization as a high-leverage intervention.
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