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ABSTRACT

We systematically benchmark four critical unresolved challenges
in Al-driven cybersecurity: (1) scalable attack graph generation, (2)
standardized LLM evaluation for cybersecurity, (3) game-theoretic
and LLM integration, and (4) automated annotation workflows.
Through simulation across network sizes up to 1,000 nodes, five
LLM models, and multiple integration architectures, we quantify
the current state and gaps. Automated attack graph generation
achieves 502x speedup over manual curation at 1,000 nodes while
maintaining 70% coverage. Among LLMs, GPT-5 leads across 8 cy-
bersecurity task categories, though graph generation remains the
weakest capability for all models. The Generative Cut-the-Rope (G-
CTR) integrated framework achieves the highest composite score
(0.869), outperforming both LLM-only and game-theory-only ap-
proaches. Al-assisted annotation provides 6x throughput improve-
ment with only 3% accuracy trade-off. These benchmarks provide
quantitative baselines for tracking progress on each challenge.

1 INTRODUCTION

Al-driven cybersecurity has seen rapid adoption, particularly in
automated penetration testing and attack graph analysis [2-4].
However, four critical challenges remain unresolved: scalability of
attack graph generation [5, 6], lack of comprehensive LLM evalua-
tion benchmarks, insufficient integration of game-theoretic frame-
works [1] with LLM automation, and gaps between Al capabilities
and human annotation workflows.

We establish quantitative benchmarks for each challenge through
systematic simulation and analysis, providing baselines for future
research.

2 CHALLENGE 1: ATTACK GRAPH
SCALABILITY

2.1 Method

We simulate attack graph generation for networks of 10-1,000 nodes
using three approaches: manual curation, automated generation,
and LLM-assisted generation. Each network has an average of 2.5
vulnerabilities per node with random connectivity.

2.2 Results

Figure 1 shows that manual generation time scales quadratically
(O(n?)) while automated methods scale as O(nlogn). At 1,000
nodes, automated methods achieve a 502X speedup. However, cov-
erage degrades from 80% to 70% for automated methods at scale.

3 CHALLENGE 2: LLM CYBERSECURITY
BENCHMARKS
We evaluate five LLMs across eight cybersecurity task categories

(Figure 2). GPT-5 achieves the highest average score (0.72), with
defense recommendation as the strongest category across all models.

Attack Graph Generation Time Attack Path Coverage
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106 { —#- Automated
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—=- Automated
—4— LLM-Assisted

ration Time (s, log scale)
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Figure 1: Attack graph generation time (log scale) and cover-
age by method.

LLM Cybersecurity Benchmark Scores

Figure 2: LLM scores across cybersecurity benchmark tasks.

Attack graph generation remains the weakest task, with the best
model scoring only 0.55.

4 CHALLENGE 3: GAME-THEORETIC
INTEGRATION

We compare five approaches for integrating strategic reasoning
with Al automation (Figure 3). The G-CTR integrated framework
achieves the highest composite score (0.869), combining high accu-
racy (0.88), reasonable speed (0.82), and broad coverage (0.90).

5 CHALLENGE 4: ANNOTATION WORKFLOWS

Al-assisted annotation achieves 6Xx throughput improvement over
manual annotation (Figure 4), with costs reduced by approximately
60%. The accuracy trade-off is modest: 92% for Al-assisted versus
95% for fully manual annotation.

6 DISCUSSION

Our benchmarks reveal that while significant progress has been
made on each challenge, substantial gaps remain. Attack graph gen-
eration needs better coverage at scale; LLMs need improved graph
reasoning capabilities; game-theoretic integration shows promise
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Figure 3: Performance comparison of integration approaches.
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Figure 4: Annotation time and cost: human vs Al-assisted.
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but requires validation on real environments; and annotation work-
flows need accuracy improvements to match human quality.

7 CONCLUSION

We provide the first unified quantitative benchmark across four
unresolved challenges in Al-driven cybersecurity, establishing base-
lines for scalability (502X speedup), LLM capability (0.72 best aver-
age), integration effectiveness (0.869 composite), and annotation
efficiency (6x speedup).
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