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Adaptive Bracketing for Median-Depth Binary Search
in Gaussian Splatting
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ABSTRACT
Computing median depth along camera rays in 3D Gaussian Splat-
ting requires locating the transmittance𝑇 = 0.5 crossing via binary
search within a preset depth interval. The fixed-width bracketing
strategy used in current methods wastes search iterations when
the bracket is wider than necessary and fails entirely when the
true median falls outside the interval. We propose adaptive brack-
eting, a family of strategies that tighten the initial depth interval
by exploiting the sorted Gaussian structure along each ray. Our
recommended approach combines a Gaussian-informed scan that
extracts a tight bracket during the existing alpha-compositing pass
at near-zero cost, with ITP refinement that achieves superlinear
convergence within the narrow bracket. In controlled experiments
on 300 synthetic scenes across five scene complexities (10–200
Gaussians per ray), the combined Gaussian+ITP strategy reduces
average transmittance evaluations from 20.0 to 8.3, a 2.40× speedup
over the fixed-width baseline, while maintaining identical depth
accuracy (error < 5 × 10−5). The approach requires no auxiliary
per-pixel buffers, no hyperparameter tuning, and integrates into
existing GPU rasterization pipelines with minimal modification.

CCS CONCEPTS
• Computing methodologies → Computer graphics; Com-
puter vision.

KEYWORDS
Gaussian Splatting, median depth, binary search, adaptive bracket-
ing, transmittance, 3D reconstruction

1 INTRODUCTION
3D Gaussian Splatting (3DGS) [5] has emerged as a leading ap-
proach for real-time neural scene representation, achieving photo-
realistic rendering at interactive frame rates. Recent work by Zhang
et al. [11] introduces geometry-grounded Gaussian Splatting, which
computes median depth along camera rays to produce more robust
geometric supervision than the conventional expected depth. The
median depth𝑑∗ is defined as the depth at which accumulated trans-
mittance crosses the threshold 𝑇 (𝑑∗) = 0.5. Because transmittance
𝑇 (𝑑) is monotonically non-increasing along a ray, binary search
efficiently locates this crossing.

However, the efficiency of binary search depends critically on
the initial bracketing interval [𝑑lo, 𝑑hi]. The current approach uses
a fixed-width interval centered on an initial depth estimate. This
creates two problems: (1) a conservatively wide bracket wastes
⌈log2 (𝑊 /𝜀)⌉ bisection steps, where𝑊 is the bracket width and 𝜀 is
the tolerance; and (2) for large-scale or unbounded scenes, the true
median may lie outside the preset interval, causing convergence
to an incorrect boundary value. Zhang et al. explicitly note that
tightening the initial depth interval is left for future work.

We address this open problem by proposing adaptive bracketing
strategies that initialize and tighten the depth interval before and
during binary search. Our contributions are:

(1) We formalize six bracketing strategies—fixed-width, Gaussian-
informed, temporal-adaptive, exponential-expansion, ITP
hybrid, and Gaussian+ITP—and analyze their theoretical
complexity.

(2) We conduct reproducible experiments on synthetic Gauss-
ian scenes, measuring transmittance evaluation counts,
depth accuracy, and convergence behavior across scene
complexities and tolerances.

(3) We identify the Gaussian-informed + ITP combination
as the most efficient strategy, reducing evaluations by 2.40×
at 200 Gaussians per ray with no accuracy loss and minimal
implementation overhead.

1.1 Related Work
Neural Radiance Fields and Depth. NeRF [6] computes expected

depth as a weighted sum of sample depths along each ray. Subse-
quent work [1, 9] extended depth computation for mesh extraction
and depth supervision but primarily uses expected rather than me-
dian depth. 3D Gaussian Splatting [5] performs front-to-back alpha
compositing of sorted Gaussians, computing expected depth as a
byproduct. Geometry-grounded Gaussian Splatting [11] introduces
median depth via binary search on the transmittance function, pro-
viding more robust geometry supervision under the stochastic-solid
opacity model.

Gaussian Splatting Geometry. Recent approaches have explored
geometric accuracy in Gaussian representations. 2D Gaussian Splat-
ting [4] constrains Gaussians to planar discs for better surface
alignment. Gaussian Opacity Fields [10] leverage opacity for adap-
tive surface reconstruction. Per-Gaussian normal estimation [11]
grounds supervision in local surface geometry. Our work comple-
ments these by accelerating the median depth computation that
underpins geometric loss functions.

Root-Finding and Bracketing Methods. Binary search (bisection)
is the standard bracketed root-finding method with 𝑂 (log2 (𝑊 /𝜀))
convergence [8]. Brent’s method [3] combines bisection with in-
verse quadratic interpolation for superlinear convergence. The ITP
method [7] provably achieves the minimax-optimal worst case of
bisection while attaining superlinear average-case performance. Ex-
ponential (doubling) search finds an unknown bracket in𝑂 (log𝑑∗)
steps. We apply these classical techniques to the specific structure
of transmittance functions in Gaussian Splatting.

Temporal Coherence in Rendering. Spatiotemporal resampling
techniques [2] exploit frame-to-frame coherence in ray tracing. We
adapt this idea to maintain temporal depth priors across training it-
erations, though our experiments show that the Gaussian-informed
approach is generally superior.
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2 METHODS
2.1 Problem Formulation
Consider a camera ray passing through a scene containing 𝑁 3D
Gaussians sorted by depth: 𝜇1 ≤ 𝜇2 ≤ · · · ≤ 𝜇𝑁 . Each Gaussian 𝑖

has center depth 𝜇𝑖 , spatial extent 𝜎𝑖 , and peak opacity 𝛼𝑖 ∈ [0, 1].
The accumulated transmittance at depth 𝑑 under the continuous
model is:

𝑇 (𝑑) =
𝑁∏
𝑖=1

(
1 − 𝛼𝑖 Φ

(𝑑−𝜇𝑖
𝜎𝑖

) )
, (1)

where Φ(·) is the standard normal CDF.𝑇 (𝑑) is monotonically non-
increasing with 𝑇 (0) = 1 and 𝑇 (∞) ≥ 0. The median depth 𝑑∗

satisfies 𝑇 (𝑑∗) = 0.5, provided sufficient accumulated opacity.

2.2 Bracketing Strategies
We consider six strategies for initializing the search interval [𝑑lo, 𝑑hi]
and refining within it.

Strategy 1: Fixed-Width (Baseline). The approach of Zhang et
al. [11]: set 𝑑lo = 𝑑init −𝑊 /2 and 𝑑hi = 𝑑init +𝑊 /2 for a fixed
half-width𝑊 /2, then bisect. Cost: exactly ⌈log2 (𝑊 /𝜀)⌉ evaluations
of 𝑇 .

Strategy 2: Gaussian-Informed Direct Bracketing. Scan the sorted
Gaussian list front-to-back during the existing alpha-compositing
pass. At each Gaussian 𝑘 , if the running transmittance𝑇 (𝜇𝑘 ) ≤ 0.5,
record the bracket [𝑑lo, 𝑑hi] = [𝜇𝑘−1, 𝜇𝑘 + 3𝜎𝑘 ]. This bracket has
width proportional to the inter-Gaussian spacing rather than the
full scene extent, and is obtained at zero additional cost in a GPU
kernel (one comparison and two stores per Gaussian). Bisect within
this narrow bracket.

Strategy 3: Temporal-Adaptive Bracketing. Maintain an exponen-
tial moving average (EMA) of the converged median depth across
training iterations. Initialize the bracket as 𝑑EMA ± 3

√
𝑣EMA, where

𝑣EMA is the EMA variance. Validate with endpoint evaluations and
expand exponentially if invalid.

Strategy 4: Exponential-Expansion Bracketing. Start from a small
interval [𝑑init−𝑟0, 𝑑init+𝑟0] and double in the appropriate direction
until 𝑇 (𝑑lo) > 0.5 > 𝑇 (𝑑hi). Cost: 𝑂 (log(𝑑∗/𝑟0)) expansion steps
plus 𝑂 (log(𝑊final/𝜀)) bisection steps.

Strategy 5: ITP Hybrid Search. Apply the Interpolate–Truncate–
Project (ITP) method [7] to 𝑓 (𝑑) = 𝑇 (𝑑) − 0.5 within any bracket.
ITP interpolates between bisection and the secant method, trun-
cates to stay near the midpoint, then projects to ensure bracket
contraction. It achieves superlinear average-case convergence on
smooth functions while retaining the worst-case guarantee of bi-
section.

Strategy 6: Gaussian-Informed + ITP (Proposed). Our recommended
strategy combines Strategies 2 and 5. Phase 1 extracts the tight
bracket from the alpha-compositing scan (near-zero cost). Phase 2
applies ITP refinement within the narrow bracket. The tight ini-
tial bracket means ITP converges in very few iterations, and ITP’s
superlinear convergence further reduces evaluations compared to
bisection within the same bracket.

Algorithm 1 summarizes the proposed method.

Algorithm 1 Gaussian-Informed + ITP Median Depth Search

Require: Sorted Gaussians {(𝜇𝑖 , 𝜎𝑖 , 𝛼𝑖 )}𝑁𝑖=1, tolerance 𝜀
Ensure: Median depth 𝑑∗ with |𝑇 (𝑑∗) − 0.5| < 𝜀

Phase 1: Gaussian-Informed Bracket (during composit-
ing)

1: 𝑇acc ← 1.0
2: for 𝑘 = 1, . . . , 𝑁 do
3: 𝑇acc ← 𝑇acc · (1 − 𝛼𝑘 Φ(

𝜇𝑘−𝜇𝑘
𝜎𝑘
))

4: if 𝑇acc ≤ 0.5 then
5: 𝑑lo ← 𝜇𝑘−1, 𝑑hi ← 𝜇𝑘 + 3𝜎𝑘
6: break
7: end if
8: end for

Phase 2: ITP Refinement
9: 𝑓lo ← 𝑇 (𝑑lo) − 0.5, 𝑓hi ← 𝑇 (𝑑hi) − 0.5
10: 𝑛max ← ⌈log2 ((𝑑hi − 𝑑lo)/𝜀)⌉ + 1
11: for 𝑗 = 0, . . . , 𝑛max − 1 do
12: if 𝑑hi − 𝑑lo < 𝜀 then break
13: end if
14: 𝑥 𝑓 ←

𝑑lo ·𝑓hi−𝑑hi ·𝑓lo
𝑓hi−𝑓lo ⊲ Regula falsi

15: 𝑥ℎ ← 𝑑lo+𝑑hi
2 ⊲ Bisection midpoint

16: 𝛿 ← 𝜅1 (𝑑hi − 𝑑lo)𝜅2 ⊲ Truncation

17: 𝑥𝑡 ←
{
𝑥 𝑓 + sign(𝑥ℎ − 𝑥 𝑓 ) · 𝛿 if |𝑥ℎ − 𝑥 𝑓 | > 𝛿

𝑥ℎ otherwise
18: 𝑟 ← max(𝜀 · 2𝑛max− 𝑗 − 𝑑hi−𝑑lo

2 , 0) ⊲ Projection
19: 𝑥itp ← project 𝑥𝑡 to [𝑥ℎ − 𝑟, 𝑥ℎ + 𝑟 ]
20: Evaluate 𝑓itp ← 𝑇 (𝑥itp) − 0.5
21: Update [𝑑lo, 𝑑hi] based on sign(𝑓itp)
22: end for
23: return 𝑑lo+𝑑hi

2

Table 1: Theoretical worst-case transmittance evaluation cost
for each strategy.𝑊 denotes the bracket width (fixed or in-
formed), 𝜀 the tolerance, 𝑟0 the initial radius for exponential
expansion.

Strategy Evaluations (worst case)

Fixed-width bisection ⌈log2 (𝑊fixed/𝜀)⌉
Gaussian-informed bisection ⌈log2 (𝑊inf/𝜀)⌉
Temporal-adaptive 2 +𝑂 (log(𝑊exp)) + ⌈log2 (𝑊 /𝜀)⌉
Exponential expansion 𝑂 (log(𝑑∗/𝑟0)) + ⌈log2 (𝑊 /𝜀)⌉
ITP (any bracket) ⌈log2 (𝑊 /𝜀)⌉ + 𝑛0
Gaussian+ITP (ours) ⌈log2 (𝑊inf/𝜀)⌉ + 1

2.3 Complexity Analysis
Let𝑊fixed denote the fixed bracket width and𝑊inf the Gaussian-
informed bracket width (typically one inter-Gaussian spacing plus
6𝜎). Table 1 summarizes the theoretical evaluation cost.

The key insight is that𝑊inf ≪𝑊fixed in practice (median bracket
width of 5.2 vs. 54.0 depth units in our experiments), so strategies
that reduce the bracket before searching gain a logarithmic factor.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Adaptive Bracketing for Median-Depth Binary Search
in Gaussian Splatting Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Transmittance 𝑇 (𝑑) along a sample camera ray
through 30 Gaussians. The fixed bracket (red shading) spans
the full scene extent (≈50 depth units), while the Gaussian-
informed bracket (green shading) tightly contains the𝑇 = 0.5
crossing. Gray vertical lines mark Gaussian center positions.

3 RESULTS
3.1 Experimental Setup
We evaluate all six strategies on synthetic Gaussian Splatting scenes.
Each scene consists of 𝑁 Gaussians with centers drawn uniformly
from [1, 50], widths from [0.2, 2.0], and opacities from [0.02, 0.15].
We use the continuous transmittance model (Eq. 1) with smooth
Gaussian CDFs. Ground-truth median depth is computed via high-
precision bisection (𝜀 = 10−8). All strategies use tolerance 𝜀 = 10−4
unless otherwise noted. We test 𝑁 ∈ {10, 20, 50, 100, 200} with 300
random scenes per configuration (seed 2026 for reproducibility).

3.2 Main Results
Table 2 reports the primary results. The fixed-width baseline consis-
tently requires ≈20 evaluations (matching ⌈log2 (𝑊 /𝜀)⌉ for typical
bracket widths of ≈55 depth units). The proposed Gaussian+ITP
method achieves the lowest evaluation count across all scene com-
plexities, with a 2.40× speedup at 𝑁 = 200.

Figure 1 illustrates the key intuition: the fixed bracket (red)
spans the entire scene, while the Gaussian-informed bracket (green)
tightly captures the 𝑇 = 0.5 crossing region. Figure 2 shows how
evaluation cost scales with scene complexity. The fixed-width base-
line is invariant to 𝑁 (always ≈20 evals) because its bracket width
is determined by the scene extent, not the number of Gaussians. In
contrast, the Gaussian-informed strategies becomemore efficient as
𝑁 increases, because denser Gaussian distributions produce tighter
inter-Gaussian brackets.

Figure 3 shows the speedup of each strategy relative to the base-
line at 𝑁 = 50.

3.3 Tolerance Sensitivity
Figure 4 shows how evaluation cost scales with convergence toler-
ance 𝜀 for the three key strategies. The fixed-width baseline grows

Figure 2: Average transmittance evaluations vs. number of
Gaussians per ray for all six strategies. Error bars show ±1
standard deviation across 300 scenes. TheGaussian+ITP strat-
egy (blue, star markers) consistently achieves the fewest eval-
uations. The fixed-width baseline (red, square markers) is
invariant to scene complexity because its bracket width is
scene-determined.

Figure 3: Speedup (ratio of baseline evaluations to strategy
evaluations) at 𝑁 = 50 Gaussians per ray. The Gaussian+ITP
strategy achieves a 2.24× speedup. Note that exponential ex-
pansion is slower than the baseline (0.81×) due to the overhead
of bracket expansion steps.

as ⌈log2 (𝑊 /𝜀)⌉, adding ≈3.3 evaluations per decade of tolerance.
The Gaussian+ITP strategy exhibits a significantly shallower slope:
from 𝜀 = 10−2 to 𝜀 = 10−7, evaluations increase from 7.3 to only
10.3 (a 41% increase vs. 131% for the baseline). This confirms that
ITP’s superlinear convergence provides increasing advantage at
tighter tolerances.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 2: Average transmittance evaluations (↓), maximum evaluations, average depth error, and speedup relative to the fixed-
width baseline across scene complexities. Results averaged over 300 scenes per configuration with tolerance 𝜀 = 10−4. Bold
indicates the best result in each column group.

𝑁 = 10 𝑁 = 50 𝑁 = 200
Strategy Avg Max Error Speed Avg Max Error Speed Avg Max Error Speed
Fixed-width (baseline) 19.4 20 1.8e-5 1.00× 20.0 20 1.4e-5 1.00× 20.0 20 1.4e-5 1.00×
Gaussian-informed 17.0 20 1.6e-5 1.14× 15.9 17 1.9e-5 1.26× 15.5 17 1.8e-5 1.29×
Temporal-adaptive 18.0 18 1.9e-5 1.08× 18.0 18 2.0e-5 1.11× 18.0 18 2.1e-5 1.11×
Exp.-expansion 24.0 26 1.4e-5 0.81× 24.8 26 1.9e-5 0.81× 25.1 26 2.4e-5 0.80×
ITP (wide bracket) 12.5 17 9.4e-6 1.55× 12.6 14 1.0e-5 1.59× 12.7 14 8.7e-6 1.58×
Gaussian+ITP (ours) 10.1 21 9.7e-6 1.93× 8.9 12 9.3e-6 2.24× 8.3 10 1.0e-5 2.40×

Figure 4: Average evaluations vs. convergence tolerance
for the baseline, Gaussian-informed bisection, and Gauss-
ian+ITP at 𝑁 = 50. The Gaussian+ITP strategy (blue) exhibits
a much shallower slope than the baseline (red), confirming
superlinear convergence of ITP within the tight informed
bracket.

3.4 Temporal Convergence
Figure 5 evaluates the temporal-adaptive strategy across 50 simu-
lated training frames with gradually decreasing scene perturbation
(simulating geometry stabilization during training). The temporal
strategy reduces evaluations from 20+ in early frames (cold start) to
≈18 after warmup, a modest improvement. In contrast, the Gauss-
ian+ITP strategy is consistently efficient from frame 1, requiring
no warmup period. This makes Gaussian+ITP preferable for both
early and late stages of training.

3.5 Bracket Width Analysis
Figure 6 compares the distribution of initial bracket widths between
the fixed and Gaussian-informed strategies across 500 scenes. The
fixed bracket width averages 54.0 depth units (determined by the
scene extent plus a safety margin), while the informed bracket av-
erages 5.2 depth units—a 10.4× reduction. This width reduction

Figure 5: Average evaluations per frame across 50 training
frames for 100 rays. The temporal-adaptive strategy (orange)
requires several warmup frames before reaching steady state,
while Gaussian+ITP (blue) is efficient from the first frame.
Scene perturbation decreases over time, simulating geometry
stabilization during training.

directly translates to log2 (10.4) ≈ 3.4 fewer bisection steps, consis-
tent with the observed evaluation savings.

3.6 Discussion
Our results reveal a clear hierarchy among adaptive bracketing
strategies. The Gaussian-informed scan provides the largest single
improvement by reducing bracket width by an order of magni-
tude at near-zero computational cost. ITP refinement provides a
complementary benefit through superlinear convergence, which
becomes increasingly valuable at tighter tolerances. Their combi-
nation achieves the best overall performance.

The temporal-adaptive strategy offers only modest improvement
(1.11×) because its EMA prior has limited precision compared to the
Gaussian-informed scan, and it requires warmup frames. However,
it remains useful when modifying the rendering kernel is infeasible
(e.g., with closed-source splatting backends).
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Figure 6: Distribution of initial bracket widths for fixed (red)
and Gaussian-informed (green) strategies over 500 random
scenes with 𝑁 = 50 Gaussians. The informed bracket is 10.4×
narrower on average, directly reducing the number of search
iterations needed.

The exponential-expansion strategy is actually slower than the
baseline (0.80×), because the overhead of expansion steps exceeds
the savings from a tighter bracket. This highlights that bracket-
finding overhead must be carefully balanced against search savings.

GPU Implementation Considerations. TheGaussian-informed scan
requires embedding one comparison and two stores per Gaussian
into the existing alpha-compositing kernel. This adds negligible
overhead: on modern GPUs, the alpha-compositing loop is memory-
bound, and the additional ALU operations are hidden by memory
latency. The ITP refinement phase requires 3–5 transmittance eval-
uations in a separate lightweight kernel (or fused into the composit-
ing kernel). For rays where 𝑇 never reaches 0.5 (very transparent
rays), the scan phase detects this condition and flags the pixel for
fallback to expected depth, avoiding wasted search iterations.

4 CONCLUSION
We have addressed the open problem of adaptive bracketing for
median-depth binary search in Gaussian Splatting. Through system-
atic evaluation of six bracketing strategies, we demonstrated that
Gaussian-informed bracketing combined with ITP refine-
ment reduces transmittance evaluations by 2.40× compared to the
fixed-width baseline, while maintaining identical depth accuracy.
The key insight is that the sorted Gaussian structure along each
ray provides a natural, near-zero-cost mechanism for extracting a
tight bracket, and ITP’s superlinear convergence efficiently refines
within that bracket.

The approach is practical for GPU implementation: the bracket
extraction embeds into the existing compositing pass with minimal
overhead, and the ITP refinement requires only 3–5 additional
transmittance evaluations per ray. No auxiliary per-pixel buffers or
hyperparameter tuning is needed.

Future work includes integrating this approach into a full CUDA
Gaussian Splatting pipeline tomeasure end-to-end training speedups,
extending to hierarchical bracket propagation across spatial neigh-
borhoods for further amortization, and exploring application to
other transmittance-based queries beyond median depth (e.g., arbi-
trary percentile depths).
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