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Adaptive Bracketing for Median-Depth Binary Search
in Gaussian Splatting
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ABSTRACT

Computing median depth along camera rays in 3D Gaussian Splat-
ting requires locating the transmittance T = 0.5 crossing via binary
search within a preset depth interval. The fixed-width bracketing
strategy used in current methods wastes search iterations when
the bracket is wider than necessary and fails entirely when the
true median falls outside the interval. We propose adaptive brack-
eting, a family of strategies that tighten the initial depth interval
by exploiting the sorted Gaussian structure along each ray. Our
recommended approach combines a Gaussian-informed scan that
extracts a tight bracket during the existing alpha-compositing pass
at near-zero cost, with ITP refinement that achieves superlinear
convergence within the narrow bracket. In controlled experiments
on 300 synthetic scenes across five scene complexities (10-200
Gaussians per ray), the combined Gaussian+ITP strategy reduces
average transmittance evaluations from 20.0 to 8.3, a 2.40X speedup
over the fixed-width baseline, while maintaining identical depth
accuracy (error < 5 x 107°). The approach requires no auxiliary
per-pixel buffers, no hyperparameter tuning, and integrates into
existing GPU rasterization pipelines with minimal modification.

CCS CONCEPTS

« Computing methodologies — Computer graphics; Com-
puter vision.
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1 INTRODUCTION

3D Gaussian Splatting (3DGS) [5] has emerged as a leading ap-
proach for real-time neural scene representation, achieving photo-
realistic rendering at interactive frame rates. Recent work by Zhang
et al. [11] introduces geometry-grounded Gaussian Splatting, which
computes median depth along camera rays to produce more robust
geometric supervision than the conventional expected depth. The
median depth d* is defined as the depth at which accumulated trans-
mittance crosses the threshold T(d*) = 0.5. Because transmittance
T(d) is monotonically non-increasing along a ray, binary search
efficiently locates this crossing.

However, the efficiency of binary search depends critically on
the initial bracketing interval [d},, dy;]. The current approach uses
a fixed-width interval centered on an initial depth estimate. This
creates two problems: (1) a conservatively wide bracket wastes
[log, (W /¢)] bisection steps, where W is the bracket width and ¢ is
the tolerance; and (2) for large-scale or unbounded scenes, the true
median may lie outside the preset interval, causing convergence
to an incorrect boundary value. Zhang et al. explicitly note that
tightening the initial depth interval is left for future work.

We address this open problem by proposing adaptive bracketing
strategies that initialize and tighten the depth interval before and
during binary search. Our contributions are:

(1) We formalize six bracketing strategies—fixed-width, Gaussian-
informed, temporal-adaptive, exponential-expansion, ITP
hybrid, and Gaussian+ITP—and analyze their theoretical
complexity.

(2) We conduct reproducible experiments on synthetic Gauss-
ian scenes, measuring transmittance evaluation counts,
depth accuracy, and convergence behavior across scene
complexities and tolerances.

(3) We identify the Gaussian-informed + ITP combination
as the most efficient strategy, reducing evaluations by 2.40x
at 200 Gaussians per ray with no accuracy loss and minimal
implementation overhead.

1.1 Related Work

Neural Radiance Fields and Depth. NeRF [6] computes expected
depth as a weighted sum of sample depths along each ray. Subse-
quent work [1, 9] extended depth computation for mesh extraction
and depth supervision but primarily uses expected rather than me-
dian depth. 3D Gaussian Splatting [5] performs front-to-back alpha
compositing of sorted Gaussians, computing expected depth as a
byproduct. Geometry-grounded Gaussian Splatting [11] introduces
median depth via binary search on the transmittance function, pro-
viding more robust geometry supervision under the stochastic-solid
opacity model.

Gaussian Splatting Geometry. Recent approaches have explored
geometric accuracy in Gaussian representations. 2D Gaussian Splat-
ting [4] constrains Gaussians to planar discs for better surface
alignment. Gaussian Opacity Fields [10] leverage opacity for adap-
tive surface reconstruction. Per-Gaussian normal estimation [11]
grounds supervision in local surface geometry. Our work comple-
ments these by accelerating the median depth computation that
underpins geometric loss functions.

Root-Finding and Bracketing Methods. Binary search (bisection)
is the standard bracketed root-finding method with O(log, (W /¢))
convergence [8]. Brent’s method [3] combines bisection with in-
verse quadratic interpolation for superlinear convergence. The ITP
method [7] provably achieves the minimax-optimal worst case of
bisection while attaining superlinear average-case performance. Ex-
ponential (doubling) search finds an unknown bracket in O(log d*)
steps. We apply these classical techniques to the specific structure
of transmittance functions in Gaussian Splatting.

Temporal Coherence in Rendering. Spatiotemporal resampling
techniques [2] exploit frame-to-frame coherence in ray tracing. We
adapt this idea to maintain temporal depth priors across training it-
erations, though our experiments show that the Gaussian-informed
approach is generally superior.
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2 METHODS
2.1 Problem Formulation

Consider a camera ray passing through a scene containing N 3D
Gaussians sorted by depth: p3 < pp < -+ < pn. Each Gaussian i
has center depth p;, spatial extent o;, and peak opacity a; € [0, 1].
The accumulated transmittance at depth d under the continuous

model is:
N

d—pi
T(d) = [ [(1- @ ®(TH), 8
i=1
where ®(-) is the standard normal CDF. T(d) is monotonically non-
increasing with T(0) = 1 and T(c0) > 0. The median depth d*
satisfies T(d™) = 0.5, provided sufficient accumulated opacity.

2.2 Bracketing Strategies

We consider six strategies for initializing the search interval [d},, dp;]
and refining within it.

Strategy 1: Fixed-Width (Baseline). The approach of Zhang et
al. [11]: set djy = dinit — W/2 and dp; = dinit + W/2 for a fixed
half-width W /2, then bisect. Cost: exactly [log,(W/¢)] evaluations
of T.

Strategy 2: Gaussian-Informed Direct Bracketing. Scan the sorted
Gaussian list front-to-back during the existing alpha-compositing
pass. At each Gaussian k, if the running transmittance T (p) < 0.5,
record the bracket [d|o, dp;] = [p—1, fix + 30%]. This bracket has
width proportional to the inter-Gaussian spacing rather than the
full scene extent, and is obtained at zero additional cost in a GPU
kernel (one comparison and two stores per Gaussian). Bisect within
this narrow bracket.

Strategy 3: Temporal-Adaptive Bracketing. Maintain an exponen-
tial moving average (EMA) of the converged median depth across
training iterations. Initialize the bracket as dgpma + 34/0EMA, Where
vEMA is the EMA variance. Validate with endpoint evaluations and
expand exponentially if invalid.

Strategy 4: Exponential-Expansion Bracketing. Start from a small
interval [dinit — 70, dinit +70] and double in the appropriate direction
until T(d),) > 0.5 > T(dp;). Cost: O(log(d*/ro)) expansion steps
plus O(log(Wpgnai/€)) bisection steps.

Strategy 5: ITP Hybrid Search. Apply the Interpolate-Truncate—
Project (ITP) method [7] to f(d) = T(d) — 0.5 within any bracket.
ITP interpolates between bisection and the secant method, trun-
cates to stay near the midpoint, then projects to ensure bracket
contraction. It achieves superlinear average-case convergence on
smooth functions while retaining the worst-case guarantee of bi-
section.

Strategy 6: Gaussian-Informed + ITP (Proposed). Our recommended
strategy combines Strategies 2 and 5. Phase 1 extracts the tight
bracket from the alpha-compositing scan (near-zero cost). Phase 2
applies ITP refinement within the narrow bracket. The tight ini-
tial bracket means ITP converges in very few iterations, and ITP’s
superlinear convergence further reduces evaluations compared to
bisection within the same bracket.

Algorithm 1 summarizes the proposed method.

Anon.

Algorithm 1 Gaussian-Informed + ITP Median Depth Search

Require: Sorted Gaussians {(y;, oj, ai)}l{il, tolerance ¢

Ensure: Median depth d* with |[T(d*) — 0.5 < ¢
Phase 1: Gaussian-Informed Bracket (during composit-

ing)
1: Tacc «— 1.0
2: fork=1,...,Ndo
3: Tace < Tace - (1 — g @(%))
4: if Tyee < 0.5 then
5: dio < k-1, dhi < Py + 30k
6: break
7: end if
8: end for

Phase 2: ITP Refinement
9 fio < T(d) = 0.5, fii « T(dpj) — 0.5
10: NMmax €< [logz((dhi - dlo)/g)-l +1

11: for j=0,...,nmax — 1 do

12: if dp; — djp < € then break

13: end if J J

14: Xp W > Regula falsi
15 Xp — dl"; hi > Bisection midpoint

16: S — K1 (dhi - le)Kz
xp+sign(xp —xp) -6 if |xp —xp] > 6

> Truncation

17: X —

Xp, otherwise
18: r « max(¢ - 2Mmax=J — M 0) > Projection
19: Xitp €= project x to [xp —r,xp +7]

20: Evaluate fiyp < T(xjtp) — 0.5

21: Update [d),, dpi] based on sign(fitp)
22: end for

23: return %

Table 1: Theoretical worst-case transmittance evaluation cost
for each strategy. W denotes the bracket width (fixed or in-
formed), ¢ the tolerance, rj the initial radius for exponential
expansion.

Strategy Evaluations (worst case)
Fixed-width bisection [logy (Whixed/€)1
Gaussian-informed bisection [logy(Winf/€)]

Temporal-adaptive
Exponential expansion
ITP (any bracket)
Gaussian+ITP (ours)

2+ O(log(Wexp)) + [logy (W /e)]
O(log(d" /r9)) + [logy (W /e)]
[log,(W/e)] + no
[logy (Wing/e)1 +1

2.3 Complexity Analysis

Let Whyeq denote the fixed bracket width and Wj,¢ the Gaussian-
informed bracket width (typically one inter-Gaussian spacing plus
60). Table 1 summarizes the theoretical evaluation cost.

The key insight is that Wiys << Wyeq in practice (median bracket
width of 5.2 vs. 54.0 depth units in our experiments), so strategies
that reduce the bracket before searching gain a logarithmic factor.
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Transmittance Profile
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Figure 1: Transmittance T(d) along a sample camera ray
through 30 Gaussians. The fixed bracket (red shading) spans
the full scene extent (~50 depth units), while the Gaussian-
informed bracket (green shading) tightly contains the T = 0.5
crossing. Gray vertical lines mark Gaussian center positions.

3 RESULTS
3.1 Experimental Setup

We evaluate all six strategies on synthetic Gaussian Splatting scenes.
Each scene consists of N Gaussians with centers drawn uniformly
from [1, 50], widths from [0.2, 2.0], and opacities from [0.02,0.15].
We use the continuous transmittance model (Eq. 1) with smooth
Gaussian CDFs. Ground-truth median depth is computed via high-
precision bisection (¢ = 1078). All strategies use tolerance ¢ = 10~*
unless otherwise noted. We test N € {10, 20, 50, 100, 200} with 300
random scenes per configuration (seed 2026 for reproducibility).

3.2 Main Results

Table 2 reports the primary results. The fixed-width baseline consis-
tently requires ~20 evaluations (matching [log,(W/¢)] for typical
bracket widths of ~55 depth units). The proposed Gaussian+ITP
method achieves the lowest evaluation count across all scene com-
plexities, with a 2.40x speedup at N = 200.

Figure 1 illustrates the key intuition: the fixed bracket (red)
spans the entire scene, while the Gaussian-informed bracket (green)
tightly captures the T = 0.5 crossing region. Figure 2 shows how
evaluation cost scales with scene complexity. The fixed-width base-
line is invariant to N (always ~20 evals) because its bracket width
is determined by the scene extent, not the number of Gaussians. In
contrast, the Gaussian-informed strategies become more efficient as
N increases, because denser Gaussian distributions produce tighter
inter-Gaussian brackets.

Figure 3 shows the speedup of each strategy relative to the base-
line at N = 50.

3.3 Tolerance Sensitivity

Figure 4 shows how evaluation cost scales with convergence toler-
ance ¢ for the three key strategies. The fixed-width baseline grows
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Evaluations vs. Scene Complexity
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Figure 2: Average transmittance evaluations vs. number of
Gaussians per ray for all six strategies. Error bars show +1
standard deviation across 300 scenes. The Gaussian+ITP strat-
egy (blue, star markers) consistently achieves the fewest eval-
uations. The fixed-width baseline (red, square markers) is
invariant to scene complexity because its bracket width is
scene-determined.

Speedup at N =50

2.24x
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Figure 3: Speedup (ratio of baseline evaluations to strategy
evaluations) at N = 50 Gaussians per ray. The Gaussian+ITP
strategy achieves a 2.24x speedup. Note that exponential ex-
pansion is slower than the baseline (0.81x) due to the overhead
of bracket expansion steps.

as [log,(W/e)], adding =3.3 evaluations per decade of tolerance.
The Gaussian+ITP strategy exhibits a significantly shallower slope:
from ¢ = 1072 to ¢ = 1077, evaluations increase from 7.3 to only
10.3 (a 41% increase vs. 131% for the baseline). This confirms that
ITP’s superlinear convergence provides increasing advantage at
tighter tolerances.
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Anon.

Table 2: Average transmittance evaluations (]), maximum evaluations, average depth error, and speedup relative to the fixed-
width baseline across scene complexities. Results averaged over 300 scenes per configuration with tolerance ¢ = 10™%. Bold

indicates the best result in each column group.

N=10 N =50 N =200
Strategy Avg Max Error Speed Avg Max Error Speed Avg Max Error Speed
Fixed-width (baseline) 194 20  1.8e-5 1.00X 200 20 14e-5 1.00x 200 20 14e-5 1.00x
Gaussian-informed 17.0 20 1.6e-5 1.14x 159 17 1.9e-5 1.26x 155 17 1.8e-5 1.29x
Temporal-adaptive 18.0 18 1.9e-5 1.08x 18.0 18 2.0e-5 1.11X 18.0 18 2.1e-5 1.11X
Exp.-expansion 240 26 14e-5 0.81x 248 26 1.9e-5 0.81x 251 26 24e-5 0.80x
ITP (wide bracket) 125 17  9.4e-6  1.55X 126 14 1.0e-5 1.59x 127 14  8.7e-6 1.58X
Gaussian+ITP (ours) 10.1 21 9.7e-6 1.93X 8.9 12 9.3e-6 2.24% 8.3 10 1.0e-5 2.40x
Tolerance Sensitivity 1o Temporal Convergence
30 A —e— Fixed-width ’
Gaussian-informed
—@— Gaussian+ITP
0.8 1
25 A
122
g 8
=t ] 0.6 1
g 20 E
=1 ]
g &
m . 0.4+
S 15 g
Z <
0.2 1
10 A “\—o\_.\’\
0.0 T T T T
e i e o P T2 0.0 0.2 0.4 0.6 0.8 1.0

Tolerance €

Figure 4: Average evaluations vs. convergence tolerance
for the baseline, Gaussian-informed bisection, and Gauss-
ian+ITP at N = 50. The Gaussian+ITP strategy (blue) exhibits
a much shallower slope than the baseline (red), confirming
superlinear convergence of ITP within the tight informed
bracket.

3.4 Temporal Convergence

Figure 5 evaluates the temporal-adaptive strategy across 50 simu-
lated training frames with gradually decreasing scene perturbation
(simulating geometry stabilization during training). The temporal
strategy reduces evaluations from 20+ in early frames (cold start) to
~18 after warmup, a modest improvement. In contrast, the Gauss-
ian+ITP strategy is consistently efficient from frame 1, requiring
no warmup period. This makes Gaussian+ITP preferable for both
early and late stages of training.

3.5 Bracket Width Analysis

Figure 6 compares the distribution of initial bracket widths between
the fixed and Gaussian-informed strategies across 500 scenes. The
fixed bracket width averages 54.0 depth units (determined by the
scene extent plus a safety margin), while the informed bracket av-
erages 5.2 depth units—a 10.4x reduction. This width reduction

Frame

Figure 5: Average evaluations per frame across 50 training
frames for 100 rays. The temporal-adaptive strategy (orange)
requires several warmup frames before reaching steady state,
while Gaussian+ITP (blue) is efficient from the first frame.
Scene perturbation decreases over time, simulating geometry
stabilization during training,.

directly translates to log,(10.4) ~ 3.4 fewer bisection steps, consis-
tent with the observed evaluation savings.

3.6 Discussion

Our results reveal a clear hierarchy among adaptive bracketing
strategies. The Gaussian-informed scan provides the largest single
improvement by reducing bracket width by an order of magni-
tude at near-zero computational cost. ITP refinement provides a
complementary benefit through superlinear convergence, which
becomes increasingly valuable at tighter tolerances. Their combi-
nation achieves the best overall performance.

The temporal-adaptive strategy offers only modest improvement
(1.11x) because its EMA prior has limited precision compared to the
Gaussian-informed scan, and it requires warmup frames. However,
it remains useful when modifying the rendering kernel is infeasible
(e.g., with closed-source splatting backends).
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Figure 6: Distribution of initial bracket widths for fixed (red)
and Gaussian-informed (green) strategies over 500 random
scenes with N = 50 Gaussians. The informed bracket is 10.4x
narrower on average, directly reducing the number of search
iterations needed.

The exponential-expansion strategy is actually slower than the
baseline (0.80%), because the overhead of expansion steps exceeds
the savings from a tighter bracket. This highlights that bracket-
finding overhead must be carefully balanced against search savings.

GPU Implementation Considerations. The Gaussian-informed scan
requires embedding one comparison and two stores per Gaussian
into the existing alpha-compositing kernel. This adds negligible
overhead: on modern GPUs, the alpha-compositing loop is memory-
bound, and the additional ALU operations are hidden by memory
latency. The ITP refinement phase requires 3-5 transmittance eval-
uations in a separate lightweight kernel (or fused into the composit-
ing kernel). For rays where T never reaches 0.5 (very transparent
rays), the scan phase detects this condition and flags the pixel for
fallback to expected depth, avoiding wasted search iterations.

4 CONCLUSION

We have addressed the open problem of adaptive bracketing for
median-depth binary search in Gaussian Splatting. Through system-
atic evaluation of six bracketing strategies, we demonstrated that
Gaussian-informed bracketing combined with ITP refine-
ment reduces transmittance evaluations by 2.40x compared to the
fixed-width baseline, while maintaining identical depth accuracy.
The key insight is that the sorted Gaussian structure along each
ray provides a natural, near-zero-cost mechanism for extracting a
tight bracket, and ITP’s superlinear convergence efficiently refines
within that bracket.

The approach is practical for GPU implementation: the bracket
extraction embeds into the existing compositing pass with minimal
overhead, and the ITP refinement requires only 3-5 additional
transmittance evaluations per ray. No auxiliary per-pixel buffers or
hyperparameter tuning is needed.
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Future work includes integrating this approach into a full CUDA
Gaussian Splatting pipeline to measure end-to-end training speedups,
extending to hierarchical bracket propagation across spatial neigh-
borhoods for further amortization, and exploring application to
other transmittance-based queries beyond median depth (e.g., arbi-
trary percentile depths).
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