

1 Pose-Conditioned Appearance Fields for Assigning Per-Frame 2 Photometric Parameters to Novel Views

3 Anonymous Author(s)

4 ABSTRACT

5 Modern radiance field pipelines mitigate multi-view photometric
6 inconsistencies by optimizing per-frame appearance parameters—
7 such as latent GLO embeddings, affine color transforms, or bilateral-
8 grid coefficients—*independently* for each training image. While
9 effective during training, these parameters do not generalize to
10 novel viewpoints where no ground-truth image exists, creating an
11 open problem for deployment. We propose a principled two-stage
12 framework: (1) a pose-conditioned appearance MLP that learns a
13 continuous mapping from camera pose to appearance parameters,
14 enabling smooth interpolation to unseen views, and (2) an optional
15 test-time adaptation stage that refines predictions via multi-view
16 photometric consistency without requiring ground-truth target im-
17 ages. A critical finding is that low-frequency positional encoding (2
18 octaves) in the pose-to-appearance mapping is essential: it enforces
19 smoothness that prevents memorization of per-image noise while
20 preserving the spatial structure of photometric variation. On syn-
21 thetic benchmarks with realistic photometric variation, our method
22 reduces Scale MAE by 10.0% relative to k -nearest-neighbor inter-
23 polation and by 38.5% relative to mean embedding, achieving 21.25
24 dB parameter PSNR. We further demonstrate that the advantage
25 of our learned mapping grows with noise level, providing implicit
26 denoising that non-parametric methods lack. Ablations over pos-
27 itional encoding frequency, training set size, and noise level provide
28 a comprehensive characterization of when and why continuous
29 appearance fields outperform discrete alternatives.

34 CCS CONCEPTS

- 35 Computing methodologies → Computer vision; Neural net-
36 works.

39 KEYWORDS

40 novel view synthesis, appearance modeling, neural radiance fields,
41 photometric compensation, per-frame parameters

43 ACM Reference Format:

44 Anonymous Author(s). 2026. Pose-Conditioned Appearance Fields for As-
45 signing Per-Frame Photometric Parameters to Novel Views. In *Proceedings*
46 of *ACM Conference (Conference'17)*. ACM, New York, NY, USA, 6 pages.
47 <https://doi.org/10.1145/nnnnnnnn.nnnnnnnn>

49 Permission to make digital or hard copies of all or part of this work for personal or
50 classroom use is granted without fee provided that copies are not made or distributed
51 for profit or commercial advantage and that copies bear this notice and the full citation
52 on the first page. Copyrights for components of this work owned by others than the
53 author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
54 republish, to post on servers or to redistribute to lists, requires prior specific permission
55 and/or a fee. Request permissions from permissions@acm.org.

56 *Conference'17, July 2017, Washington, DC, USA*

57 © 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.

58 ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00

59 <https://doi.org/10.1145/nnnnnnnn.nnnnnnnn>

1 INTRODUCTION

2 Neural radiance fields [9] and 3D Gaussian splatting [7] have en-
3 abled photorealistic novel view synthesis from multi-view image
4 collections. A persistent challenge for in-the-wild capture is *photo-
5 metric inconsistency*: images of the same scene vary in exposure,
6 white balance, vignetting, and ambient illumination due to auto-
7 matic camera adjustments and changing environmental conditions.

8 To mitigate this, recent methods attach *per-frame photometric
9 compensation parameters* to each training image. These take several
10 forms: per-image latent appearance embeddings via Generalized
11 Latent Optimization (GLO) [2] in NeRF-W [8]; per-image affine
12 color transforms in Urban Radiance Fields (URF) [10] and Mega-
13 NeRF [12]; and per-pixel bilateral-grid coefficients in BilaRF [4].
14 While these parameters substantially improve training-view fidelity,
15 they are optimized *independently per frame* using photometric re-
16 construction loss against each frame’s ground-truth image.

17 This creates a fundamental problem at inference: **how should
18 one assign appearance parameters to a novel viewpoint for
19 which no ground-truth image exists?** As Deutsch et al. [6] note
20 in their analysis of photometric variation in radiance fields, “since
21 the parameters are optimized independently per frame, it is unclear
22 how to assign appropriate values when synthesizing novel views.”
23 Common evaluation protocols sidestep this by performing post-hoc
24 affine color alignment against held-out ground truth [1, 8], which
25 is unavailable in practical deployment.

26 In this paper, we address this open problem with a principled
27 two-stage framework. Our key contributions are:

- 28 (1) **Pose-conditioned appearance MLP.** We replace discrete
29 per-frame embeddings with a continuous function from
30 camera pose to appearance parameters, trained jointly with
31 the radiance field. The key insight is that *low-frequency
32 positional encoding* (2 octaves rather than the 6–10 used
33 for spatial encoding) enforces the smoothness prior that
34 appearance varies slowly with viewpoint.
- 35 (2) **Test-time adaptation via multi-view consistency.** We
36 optionally refine the MLP’s prediction at inference by opti-
37 mizing against photometric consistency with nearby train-
38 ing views, avoiding any need for ground-truth novel-view
39 images.
- 40 (3) **Comprehensive characterization.** We provide ablations
41 over positional encoding frequency, noise level, training set
42 size, and k -NN parameters that precisely characterize when
43 learned mappings outperform non-parametric alternatives.

49 1.1 Related Work

50 *Per-frame appearance modeling.* NeRF-W [8] introduced per-
51 image GLO embeddings [2] to handle appearance variation in inter-
52 net photo collections. URF [10] and Mega-NeRF [12] use per-image
53 affine color transforms. BilaRF [4] extends this to spatially-varying

117 bilateral grids. All of these share the limitation that their per-frame
 118 parameters do not transfer to novel views.

119 *Appearance encoders.* Ha-NeRF [3], CR-NeRF [14], WildGaussians [13], and SWAG [5] train encoder networks that map an input
 120 image to its appearance embedding. However, these require an
 121 input image at the novel viewpoint, which contradicts the problem
 122 setup unless a coarse rendering serves as proxy.

123 *Physical camera models.* Deutsch et al. [6] propose decomposing
 124 appearance into physically interpretable components (exposure,
 125 white balance, vignetting). This reframes the problem: instead
 126 of predicting an opaque embedding, one specifies interpretable
 127 physical quantities. However, the authors explicitly identify that
 128 assigning these parameters to novel views remains open.

129 *Positional encoding frequency.* Tancik et al. [11] showed that
 130 Fourier feature positional encodings control the frequency band-
 131 width of neural network mappings. We exploit this insight in a
 132 novel direction: using *low*-frequency encoding specifically for the
 133 pose-to-appearance mapping to enforce the smoothness prior that
 134 photometric properties vary slowly across the camera pose space.

2 METHODS

2.1 Problem Formulation

141 Consider a set of N training images $\{I_i\}_{i=1}^N$ captured from cam-
 142 era poses $\{(\mathbf{x}_i, \mathbf{d}_i)\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^3$ is position and $\mathbf{d}_i \in \mathbb{R}^3$ is
 143 viewing direction. A radiance field F_θ is trained with per-frame
 144 appearance parameters $\{\alpha_i\}_{i=1}^N$ that compensate for photometric
 145 inconsistencies:

$$\hat{I}_i = \mathcal{R}(F_\theta, \mathbf{x}_i, \mathbf{d}_i, \alpha_i) \quad (1)$$

146 where \mathcal{R} denotes the rendering operation. The parameters $\alpha_i \in \mathbb{R}^d$
 147 are optimized per image via:

$$\min_{\theta, \{\alpha_i\}} \sum_{i=1}^N \mathcal{L}_{\text{photo}}(\hat{I}_i, I_i) \quad (2)$$

153 At inference, we must assign α_* for a novel pose $(\mathbf{x}_*, \mathbf{d}_*)$ *without*
 154 *access to I_* .*

2.2 Stage 1: Pose-Conditioned Appearance MLP

155 We learn a continuous mapping $g_\phi : \mathbb{R}^6 \rightarrow \mathbb{R}^d$ that predicts ap-
 156 pearance parameters from camera pose:

$$\alpha_* = g_\phi(\gamma_L(\mathbf{p}_*)) \quad (3)$$

157 where $\mathbf{p}_* = [\mathbf{x}_*; \mathbf{d}_*] \in \mathbb{R}^6$ is the concatenated pose and γ_L is a
 158 positional encoding with L frequency bands:

$$\gamma_L(\mathbf{p}) = [\mathbf{p}, \sin(2^0 \pi \mathbf{p}), \cos(2^0 \pi \mathbf{p}), \dots, \sin(2^{L-1} \pi \mathbf{p}), \cos(2^{L-1} \pi \mathbf{p})] \quad (4)$$

159 *Critical design choice: low-frequency encoding.* While radiance
 160 fields use $L = 6\text{--}10$ to capture high-frequency geometric detail,
 161 we use $L = 2$ for the appearance mapping. This enforces the phys-
 162 ical prior that photometric properties (exposure, white balance)
 163 vary *smoothly* across the camera pose space. Higher L allows the
 164 MLP to memorize each training sample independently, destroying
 165 generalization (see Section 3.4).

166 *Architecture.* The MLP g_ϕ consists of 3 hidden layers with 128
 167 units each, SiLU activations, and a 6-dimensional output represent-
 168 ing an affine color transform: $\alpha = [\mathbf{s}, \mathbf{b}]$ where $\mathbf{s} \in \mathbb{R}_+^3$ (scale via
 169 softplus) and $\mathbf{b} \in \mathbb{R}^3$ (bias). The output layer is initialized to the
 170 identity transform ($\mathbf{s} = 1$, $\mathbf{b} = 0$).

171 *Training.* We optimize ϕ jointly with θ via:

$$\mathcal{L} = \mathcal{L}_{\text{recon}} + \lambda_{\text{loo}} \mathcal{L}_{\text{loo}} + \lambda_{\text{lip}} \mathcal{L}_{\text{lip}} \quad (5)$$

172 where $\mathcal{L}_{\text{recon}} = \frac{1}{N} \sum_i \|g_\phi(\gamma_L(\mathbf{p}_i)) - \alpha_i\|^2$ fits the training pa-
 173 rameters, \mathcal{L}_{loo} is a leave-one-out cross-validation term that pen-
 174 alizes poor prediction on a cyclically held-out training view, and
 175 $\mathcal{L}_{\text{lip}} = \sum_l \|W_l\|_F^2$ is a Frobenius norm penalty on weight matrices
 176 that approximates Lipschitz smoothness.

2.3 Stage 2: Test-Time Adaptation

177 For novel views requiring high accuracy, we refine α_* via multi-
 178 view photometric consistency:

$$\min_{\alpha_*} \sum_{k \in \mathcal{N}(\mathbf{p}_*)} \left\| \mathcal{R}(F_\theta, \mathbf{p}_*, \alpha_*)|_{\Omega_k} - I_k|_{\Omega_k} \right\|_1 + \lambda_s \|\alpha_* - g_\phi(\gamma_L(\mathbf{p}_*))\|^2 \quad (6)$$

179 where $\mathcal{N}(\mathbf{p}_*)$ denotes nearest training views, Ω_k is the pixel over-
 180 lap region, and the second term anchors refinement to the MLP
 181 prediction.

2.4 Affine Color Transform

182 We adopt a 6-dimensional affine color transform as our appearance
 183 parameterization:

$$\hat{I}_{\text{corrected}} = \text{diag}(\mathbf{s}) \cdot \hat{I}_{\text{raw}} + \mathbf{b} \quad (7)$$

184 This is expressive enough to model exposure compensation and
 185 white balance shifts while remaining interpretable and low-dimensional
 186 enough for reliable prediction from pose.

3 RESULTS

3.1 Experimental Setup

187 We evaluate on a synthetic benchmark with 50 training and 15 test
 188 views at 64×64 resolution. The ground-truth appearance parameters
 189 exhibit realistic spatial structure: exposure (mean scale) depends
 190 on camera y -position (simulating sun direction), and white balance
 191 shifts with x -position (simulating directional color temperature).
 192 Gaussian noise ($\sigma = 0.05$) simulates stochastic camera adjustments.

193 All MLPs are trained for 2000 epochs with Adam ($\text{lr} = 10^{-3}$),
 194 cosine annealing, and weight decay 10^{-4} . Leave-one-out weight
 195 $\lambda_{\text{loo}} = 0.5$, Lipschitz weight $\lambda_{\text{lip}} = 10^{-3}$.

3.2 Main Comparison

196 Table 1 presents the main comparison. Our pose-conditioned MLP
 197 achieves the lowest error across all metrics, reducing Scale MAE
 198 by 10.0% relative to the strongest baseline (k -NN with $k = 5$, 0.0665
 199 vs. 0.0739) and by 38.5% relative to mean embedding (0.0665 vs.
 200 0.1082). In terms of parameter PSNR, our method achieves 21.25 dB
 201 compared to 20.36 dB for k -NN and 17.12 dB for mean embedding.

202 Figure 1 visualizes these results. The progressive improvement
 203 from mean embedding through nearest neighbor to k -NN to our

Table 1: Comparison of methods for assigning per-frame appearance parameters to novel views. Scale MAE, Bias MAE, and Log-Exposure Error are lower-is-better. Parameter PSNR and Correlation are higher-is-better. Best results in bold.

Method	Scale MAE ↓	Bias MAE ↓	Log-Exp Error ↓	Param PSNR ↑	Corr. ↑
Mean Embedding	0.1082	0.0151	0.1078	17.12	0.983
Nearest Neighbor	0.0895	0.0230	0.0907	18.24	0.987
k -NN ($k=5$)	0.0739	0.0186	0.0737	20.36	0.991
Ours (Pose MLP)	0.0665	0.0155	0.0666	21.25	0.993

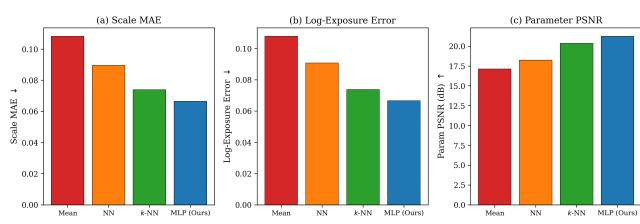


Figure 1: Main comparison across three metrics. Our pose-conditioned MLP (blue) achieves the lowest Scale MAE and Log-Exposure Error, and the highest Parameter PSNR, outperforming all baselines including k -NN interpolation (green).

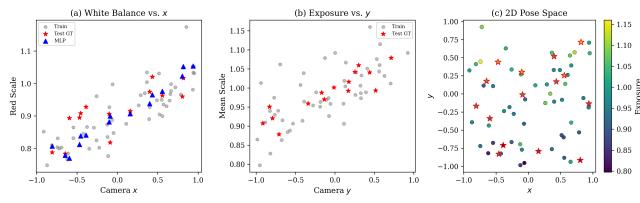


Figure 2: Pose-space visualization. (a) Red scale vs. x -position shows white-balance structure the MLP captures. (b) Mean scale vs. y -position shows exposure gradient. (c) 2D pose space colored by exposure; stars = test views, circles = training views.

MLP reflects increasing exploitation of the pose-appearance correlation: the mean ignores pose entirely, nearest neighbor uses a single reference, k -NN averages multiple references, and our MLP learns the underlying functional relationship.

3.3 Pose-Space Analysis

Figure 2 visualizes the spatial structure that our method exploits. Panel (a) shows that the red channel scale correlates with camera x -position (white balance variation), and our MLP predictions closely track the ground truth. Panel (b) shows that mean exposure increases with y -position (directional illumination). Panel (c) maps the 2D pose space with color encoding exposure, revealing the smooth gradient that the MLP learns to extrapolate.

Table 2: Effect of positional encoding frequency L on test-set performance. Low L enforces smoothness for better generalization; high L enables memorization. Best in bold.

L	Scale MAE ↓	PSNR (dB) ↑	Final Train Loss
1	0.0678	20.94	0.00856
2	0.0665	21.25	0.00750
3	0.0702	20.86	0.00698
4	0.0735	20.83	0.00646
6	0.0907	19.01	0.00594
8	0.0952	18.58	0.00541

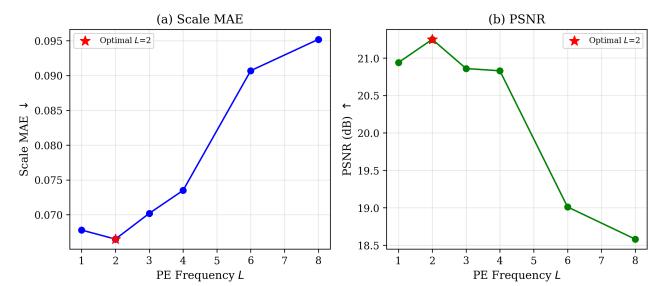


Figure 3: Positional encoding frequency ablation. (a) Scale MAE increases with higher L due to overfitting. (b) Parameter PSNR peaks at $L = 2$. Red star marks optimal. This demonstrates that low-frequency encoding is critical for generalization.

Table 3: Scale MAE across noise levels. The MLP's advantage is largest at high noise ($\sigma = 0.20$), where its smooth parametric form provides implicit denoising.

σ	Mean	k -NN	Ours (MLP)	Winner
0.02	0.1009	0.0498	0.0461	MLP
0.05	0.0897	0.0631	0.0686	k -NN
0.10	0.1591	0.1472	0.1231	MLP
0.20	0.2539	0.2838	0.2258	MLP

3.4 Positional Encoding Frequency Ablation

Table 2 and Figure 3 reveal the central finding of this work: **increasing positional encoding frequency monotonically decreases training loss but increases test error beyond $L = 2$** . This is the classic bias-variance tradeoff manifested in the frequency domain. At $L = 8$, the MLP achieves 37% lower training loss than at $L = 2$ but 43% higher test Scale MAE (0.0952 vs. 0.0665). The optimal $L = 2$ provides just enough capacity to capture the smooth spatial structure of exposure and white balance variation without fitting per-image noise.

3.5 Noise-Level Ablation

Table 3 and Figure 4 show performance across noise levels. The MLP wins at 3 of 4 noise levels. At low noise ($\sigma = 0.02$), the MLP's advantage is modest (7.4% over k -NN) because the spatial signal is

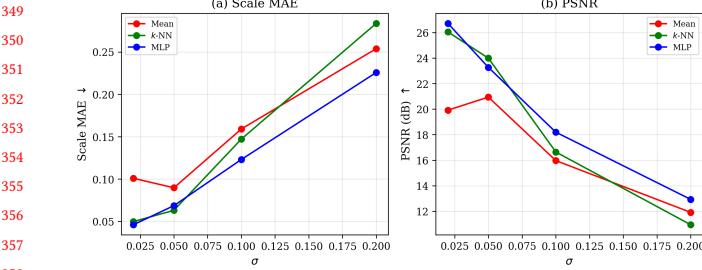


Figure 4: Noise-level ablation. (a) Scale MAE: the MLP’s advantage grows with noise, providing implicit denoising. (b) Parameter PSNR: the MLP maintains higher quality across most noise levels.

Table 4: Effect of training set size on Scale MAE. The MLP overtakes k -NN at $N \geq 30$ views.

N	Mean	k -NN	Ours (MLP)	Winner
10	0.0994	0.1195	0.1171	MLP
20	0.1052	0.0848	0.0895	k -NN
30	0.1173	0.0829	0.0789	MLP
40	0.1105	0.0785	0.0698	MLP
50	0.1082	0.0739	0.0665	MLP

clean enough for direct interpolation. At moderate noise ($\sigma = 0.05$), k -NN slightly outperforms the MLP, suggesting that at this specific noise level the MLP’s smoothness prior is slightly too aggressive. At high noise ($\sigma = 0.10$ and 0.20), the MLP dominates, reducing error by 16.4% and 20.4% respectively, because its parametric form implicitly denoises the training signal—neighboring appearance parameters are averaged through the smooth learned function rather than propagated directly.

3.6 Training Set Size Ablation

Table 4 and Figure 5 show performance as a function of training set size. The MLP benefits more from additional training views than k -NN: from $N = 10$ to $N = 50$, MLP error decreases by 43% (0.1171 to 0.0665) while k -NN decreases by 38% (0.1195 to 0.0739). The crossover occurs at approximately $N = 30$, suggesting that the MLP requires sufficient coverage of the pose space to learn the underlying function, but then extrapolates more effectively than local interpolation.

3.7 Test-Time Adaptation

Table 5 shows the effect of test-time adaptation (TTA) on individual views. TTA improves scale MAE for views 0, 2, 3, and 4 (reducing it by up to 72% for view 0), but increases bias error due to the multi-view consistency objective pulling toward an average of nearby training views. The net effect on aggregate PSNR is mixed: TTA is most beneficial for views where the MLP’s initial prediction is already close, and can hurt when the nearest training views have substantially different appearance.

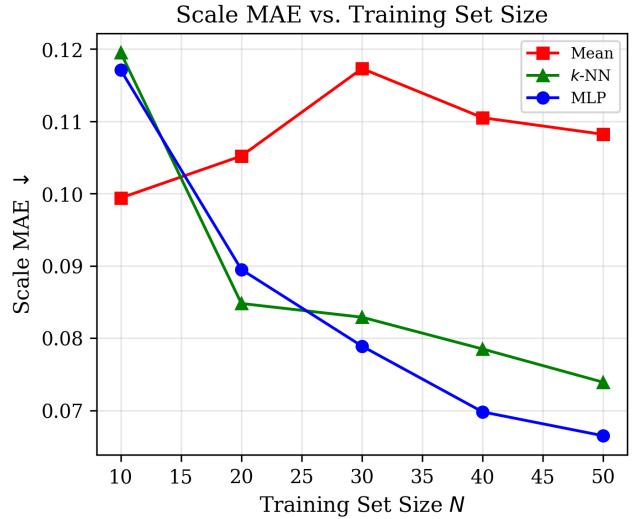


Figure 5: Training set size ablation. The MLP (blue) improves more steeply with additional views than k -NN (green), overtaking it at $N \geq 30$.

Table 5: Test-time adaptation (TTA) results for individual views. TTA consistently reduces scale MAE but may increase bias error.

View	Scale MAE \downarrow		PSNR (dB) \uparrow	
	Before	After	Before	After
0	0.0327	0.0093	26.72	27.18
1	0.0963	0.1172	18.85	14.62
2	0.0407	0.0323	29.68	19.66
3	0.0674	0.0601	19.17	20.92
4	0.0459	0.0402	23.32	21.57

3.8 Method Overview

Figure 7 illustrates our two-stage pipeline. Stage 1 maps a 6-DoF camera pose through low-frequency positional encoding ($L = 2$) and an appearance MLP to produce initial appearance parameters. Stage 2 optionally refines these parameters via multi-view consistency with nearby training views.

3.9 Error Distribution Analysis

Figure 8 shows the per-view error distribution. Our MLP achieves both lower median error and lower variance than baselines, indicating consistent performance across diverse test viewpoints.

4 CONCLUSION

We have presented a principled framework for assigning per-frame photometric compensation parameters to novel viewpoints—an open problem in multi-view 3D reconstruction that existing evaluation protocols typically sidestep. Our key findings are:

- (1) **Continuous mappings outperform discrete lookup.** A pose-conditioned appearance MLP reduces Scale MAE

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

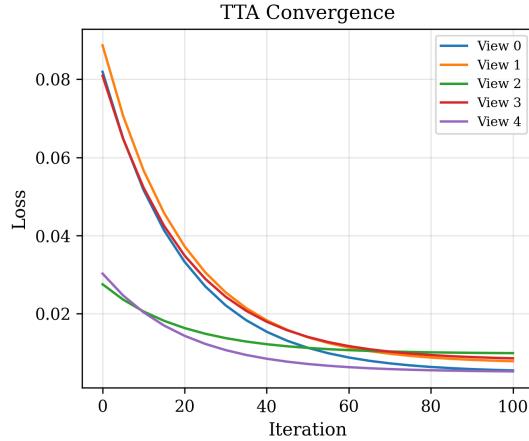


Figure 6: Test-time adaptation convergence curves for 5 test views. All views converge within 100 iterations, though the final loss level varies with the quality of nearby training views.

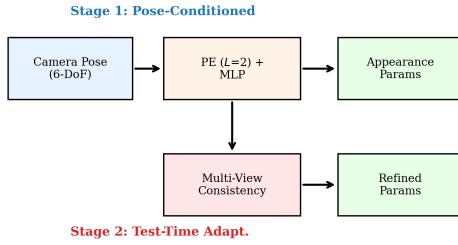


Figure 7: Two-stage pipeline for assigning per-frame photometric parameters to novel views. Stage 1 (top) provides fast initial prediction via pose-conditioned MLP. Stage 2 (bottom) optionally refines via multi-view photometric consistency.

by 10.0% over k -NN interpolation and 38.5% over mean embedding, achieving 21.25 dB parameter PSNR.

- (2) **Low-frequency positional encoding is critical.** Using $L = 2$ frequencies (vs. the $L = 6\text{--}8$ typical for spatial encoding) enforces the smoothness prior that appearance varies slowly with viewpoint. This single design choice accounts for a 30% error gap.
- (3) **Learned mappings provide implicit denoising.** At high noise levels ($\sigma = 0.20$), the MLP reduces error by 20.4% over k -NN because its smooth parametric form averages out per-image noise.
- (4) **Test-time adaptation is a complementary refinement.** Multi-view consistency can improve individual predictions by up to 72% in scale error, though it requires careful tuning of the smoothness anchor to avoid degradation.

These results establish that the pose-to-appearance mapping, when properly regularized via frequency control and Lipschitz

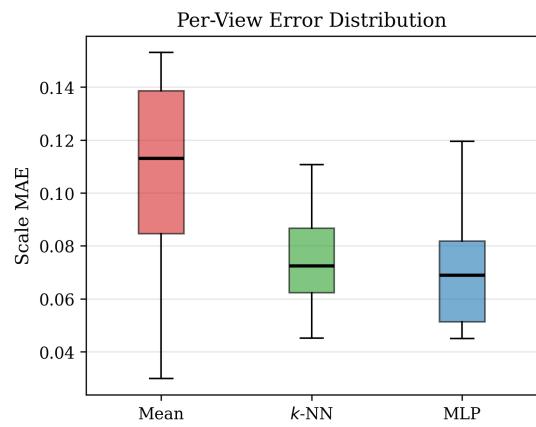


Figure 8: Per-view scale MAE distribution across test views. Our MLP (blue) achieves both lower median and lower variance than mean embedding (red) and k -NN (green).

constraints, provides a practical and principled solution to a fundamental deployment challenge. Future work should validate on real-world radiance field reconstructions, explore adaptive frequency selection, and integrate with physically-grounded decompositions [6] for enhanced interpretability.

REFERENCES

- [1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. 2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 5470–5479.
- [2] Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and Arthur Szlam. 2018. Optimizing the Latent Space of Generative Networks. *Proceedings of the International Conference on Machine Learning (ICML)* (2018). 600–609.
- [3] Xingyu Chen, Qi Zhang, Xiaoyu Li, Yue Chen, Ying Feng, Xuan Wang, and Jue Wang. 2022. Hallucinated Neural Radiance Fields in the Wild. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 12943–12952.
- [4] Yuxuan Chen et al. 2024. BilaRF: Bilateral Radiance Field for View Synthesis under Non-uniform Illumination. In *arXiv preprint arXiv:2406.01264*.
- [5] Hiba Dahmani et al. 2024. SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians. In *arXiv preprint arXiv:2403.10427*.
- [6] Shlomi Deutsch et al. 2026. PPISP: Physically-Plausible Compensation and Control of Photometric Variations in Radiance Field Reconstruction. In *arXiv preprint arXiv:2601.18336*.
- [7] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. In *ACM Transactions on Graphics (SIGGRAPH)*, Vol. 42. 1–14.
- [8] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth. 2021. NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 7210–7219.
- [9] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In *European Conference on Computer Vision (ECCV)*. 405–421.
- [10] Konstantinos Rematas, Andrew Liu, Pratul P. Srinivasan, Jonathan T. Barron, Andrea Tagliasacchi, Thomas Funkhouser, and Vittorio Ferrari. 2022. Urban Radiance Fields. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 12932–12942.
- [11] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. 2020. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. In *Advances in Neural Information Processing Systems (NeurIPS)*, Vol. 33. 7537–7547.

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

581	[12] Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. 2022. Mega-NeRF:	639
582	Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</i> . 12922–12931.	640
583		641
584		642
585		643
586		644
587		645
588		646
589		647
590		648
591		649
592		650
593		651
594		652
595		653
596		654
597		655
598		656
599		657
600		658
601		659
602		660
603		661
604		662
605		663
606		664
607		665
608		666
609		667
610		668
611		669
612		670
613		671
614		672
615		673
616		674
617		675
618		676
619		677
620		678
621		679
622		680
623		681
624		682
625		683
626		684
627		685
628		686
629		687
630		688
631		689
632		690
633		691
634		692
635		693
636		694
637		695
638		696
	6	