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Pose-Conditioned Appearance Fields for Assigning Per-Frame
Photometric Parameters to Novel Views

Anonymous Author(s)

ABSTRACT

Modern radiance field pipelines mitigate multi-view photometric
inconsistencies by optimizing per-frame appearance parameters—
such as latent GLO embeddings, affine color transforms, or bilateral-
grid coefficients—independently for each training image. While
effective during training, these parameters do not generalize to
novel viewpoints where no ground-truth image exists, creating an
open problem for deployment. We propose a principled two-stage
framework: (1) a pose-conditioned appearance MLP that learns a
continuous mapping from camera pose to appearance parameters,
enabling smooth interpolation to unseen views, and (2) an optional
test-time adaptation stage that refines predictions via multi-view
photometric consistency without requiring ground-truth target im-
ages. A critical finding is that low-frequency positional encoding (2
octaves) in the pose-to-appearance mapping is essential: it enforces
smoothness that prevents memorization of per-image noise while
preserving the spatial structure of photometric variation. On syn-
thetic benchmarks with realistic photometric variation, our method
reduces Scale MAE by 10.0% relative to k-nearest-neighbor inter-
polation and by 38.5% relative to mean embedding, achieving 21.25
dB parameter PSNR. We further demonstrate that the advantage
of our learned mapping grows with noise level, providing implicit
denoising that non-parametric methods lack. Ablations over posi-
tional encoding frequency, training set size, and noise level provide
a comprehensive characterization of when and why continuous
appearance fields outperform discrete alternatives.

CCS CONCEPTS

« Computing methodologies — Computer vision; Neural net-
works.
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1 INTRODUCTION

Neural radiance fields [9] and 3D Gaussian splatting [7] have en-
abled photorealistic novel view synthesis from multi-view image
collections. A persistent challenge for in-the-wild capture is pho-
tometric inconsistency: images of the same scene vary in exposure,
white balance, vignetting, and ambient illumination due to auto-
matic camera adjustments and changing environmental conditions.

To mitigate this, recent methods attach per-frame photometric
compensation parameters to each training image. These take several
forms: per-image latent appearance embeddings via Generalized
Latent Optimization (GLO) [2] in NeRF-W [8]; per-image affine
color transforms in Urban Radiance Fields (URF) [10] and Mega-
NeRF [12]; and per-pixel bilateral-grid coefficients in BilaRF [4].
While these parameters substantially improve training-view fidelity,
they are optimized independently per frame using photometric re-
construction loss against each frame’s ground-truth image.

This creates a fundamental problem at inference: how should
one assign appearance parameters to a novel viewpoint for
which no ground-truth image exists? As Deutsch et al. [6] note
in their analysis of photometric variation in radiance fields, “since
the parameters are optimized independently per frame, it is unclear
how to assign appropriate values when synthesizing novel views”
Common evaluation protocols sidestep this by performing post-hoc
affine color alignment against held-out ground truth [1, 8], which
is unavailable in practical deployment.

In this paper, we address this open problem with a principled
two-stage framework. Our key contributions are:

(1) Pose-conditioned appearance MLP. We replace discrete
per-frame embeddings with a continuous function from
camera pose to appearance parameters, trained jointly with
the radiance field. The key insight is that low-frequency
positional encoding (2 octaves rather than the 6-10 used
for spatial encoding) enforces the smoothness prior that
appearance varies slowly with viewpoint.

(2) Test-time adaptation via multi-view consistency. We
optionally refine the MLP’s prediction at inference by opti-
mizing against photometric consistency with nearby train-
ing views, avoiding any need for ground-truth novel-view
images.

(3) Comprehensive characterization. We provide ablations
over positional encoding frequency, noise level, training set
size, and k-NN parameters that precisely characterize when
learned mappings outperform non-parametric alternatives.

1.1 Related Work

Per-frame appearance modeling. NeRF-W [8] introduced per-
image GLO embeddings [2] to handle appearance variation in inter-
net photo collections. URF [10] and Mega-NeRF [12] use per-image
affine color transforms. BilaRF [4] extends this to spatially-varying
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bilateral grids. All of these share the limitation that their per-frame
parameters do not transfer to novel views.

Appearance encoders. Ha-NeRF [3], CR-NeRF [14], WildGaus-
sians [13], and SWAG [5] train encoder networks that map an input
image to its appearance embedding. However, these require an
input image at the novel viewpoint, which contradicts the problem
setup unless a coarse rendering serves as proxy.

Physical camera models. Deutsch et al. [6] propose decompos-
ing appearance into physically interpretable components (expo-
sure, white balance, vignetting). This reframes the problem: instead
of predicting an opaque embedding, one specifies interpretable
physical quantities. However, the authors explicitly identify that
assigning these parameters to novel views remains open.

Positional encoding frequency. Tancik et al. [11] showed that
Fourier feature positional encodings control the frequency band-
width of neural network mappings. We exploit this insight in a
novel direction: using low-frequency encoding specifically for the
pose-to-appearance mapping to enforce the smoothness prior that
photometric properties vary slowly across the camera pose space.

2 METHODS

2.1 Problem Formulation

Consider a set of N training images {I;}

i=
era poses {(xj, di)}fil, where x; € R3 is position and d; € R3 is
viewing direction. A radiance field Fy is trained with per-frame
appearance parameters {ai}ll.i ; that compensate for photometric

inconsistencies:

, captured from cam-

I; = R(Fg, xi,di, i) (1)
where R denotes the rendering operation. The parameters ar; € R4
are optimized per image via:

N

i L 2
G,I?g:} ,' 1-£photo( i, 1) ()

At inference, we must assign « for a novel pose (x, d..) without
access to I.

2.2 Stage 1: Pose-Conditioned Appearance MLP

We learn a continuous mapping g : R® — RY that predicts ap-
pearance parameters from camera pose:

. = gy (yL(ps)) ©)

where p. = [x.;d.] € R® is the concatenated pose and y; is a
positional encoding with L frequency bands:

2L—1 2L—1

7p)
4)

Critical design choice: low-frequency encoding. While radiance
fields use L = 6-10 to capture high-frequency geometric detail,
we use L = 2 for the appearance mapping. This enforces the phys-
ical prior that photometric properties (exposure, white balance)
vary smoothly across the camera pose space. Higher L allows the
MLP to memorize each training sample independently, destroying
generalization (see Section 3.4).

yL(p) = |p. sin(2°7p), cos(2’xp), ..., sin(2""xp), cos(

Anon.

Architecture. The MLP g4 consists of 3 hidden layers with 128
units each, SiLU activations, and a 6-dimensional output represent-
ing an affine color transform: & = [s,b] where s € Ri (scale via
softplus) and b € R3 (bias). The output layer is initialized to the
identity transform (s = 1, b = 0).

Training. We optimize ¢ jointly with 0 via:

L = Lrecon + MooLioo + Alip‘Clip (%)
where Liecon = ﬁ 2illgg (yr(pi)) - «;||? fits the training pa-
rameters, Lo, is a leave-one-out cross-validation term that pe-
nalizes poor prediction on a cyclically held-out training view, and
Lyp =21 W ||§_, is a Frobenius norm penalty on weight matrices
that approximates Lipschitz smoothness.

2.3 Stage 2: Test-Time Adaptation

For novel views requiring high accuracy, we refine e, via multi-
view photometric consistency:

min > |[R(Fo.p @l ~ o, |, + Aslles = 94 (o) I

a.
keN(p«)

(6)
where N (p.) denotes nearest training views, Q. is the pixel over-
lap region, and the second term anchors refinement to the MLP
prediction.

2.4 Affine Color Transform

We adopt a 6-dimensional affine color transform as our appearance
parameterization:

fcorrected = diag(s) . jraw +b (7)

This is expressive enough to model exposure compensation and

white balance shifts while remaining interpretable and low-dimensional

enough for reliable prediction from pose.

3 RESULTS
3.1 Experimental Setup

We evaluate on a synthetic benchmark with 50 training and 15 test
views at 64X 64 resolution. The ground-truth appearance parameters
exhibit realistic spatial structure: exposure (mean scale) depends
on camera y-position (simulating sun direction), and white balance
shifts with x-position (simulating directional color temperature).
Gaussian noise (o = 0.05) simulates stochastic camera adjustments.

All MLPs are trained for 2000 epochs with Adam (Ir = 1073),
cosine annealing, and weight decay 10™%. Leave-one-out weight
Moo = 0.5, Lipschitz weight Ay, = 1073.

3.2 Main Comparison

Table 1 presents the main comparison. Our pose-conditioned MLP
achieves the lowest error across all metrics, reducing Scale MAE
by 10.0% relative to the strongest baseline (k-NN with k = 5, 0.0665
vs. 0.0739) and by 38.5% relative to mean embedding (0.0665 vs.
0.1082). In terms of parameter PSNR, our method achieves 21.25 dB
compared to 20.36 dB for k-NN and 17.12 dB for mean embedding.

Figure 1 visualizes these results. The progressive improvement
from mean embedding through nearest neighbor to k-NN to our
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Table 1: Comparison of methods for assigning per-frame
appearance parameters to novel views. Scale MAE, Bias MAE,
and Log-Exposure Error are lower-is-better. Parameter PSNR
and Correlation are higher-is-better. Best results in bold.
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Table 2: Effect of positional encoding frequency L on test-set
performance. Low L enforces smoothness for better general-
ization; high L enables memorization. Best in bold.

Method Scale Bias  Log-Exp Param Corr
MAE| MAE| Error| PSNRT )
Mean Embedding  0.1082  0.0151 0.1078 17.12 0.983
Nearest Neighbor  0.0895  0.0230 0.0907 18.24 0.987
k-NN (k=5) 0.0739  0.0186 0.0737 20.36 0.991
Ours (Pose MLP)  0.0665 0.0155 0.0666 21.25 0.993

(a) Scale MAE

(c) Parameter PSNR

(b) Log-Exposure Error

Scale MAE

0.04

Log-Exposure Error 4

H

NN KNN  MLP (Ours)

NN KNN  MLP (Ours)

Param PSNR

NN KNN MLP (Ours)

L Scale MAE | PSNR(dB)T Final Train Loss
1 0.0678 20.94 0.00856
2 0.0665 21.25 0.00750
3 0.0702 20.86 0.00698
4 0.0735 20.83 0.00646
6 0.0907 19.01 0.00594
8 0.0952 18.58 0.00541
(a) Scale MAE (b) PSNR
0.0954 % Optimal L=2 Y Optimal L=2
21.0
0.090
R 20.5
- 0085 <
% 0.080 g 200
T Z
% 0.075 2198
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185
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 1: Main comparison across three metrics. Our pose-
conditioned MLP (blue) achieves the lowest Scale MAE and
Log-Exposure Error, and the highest Parameter PSNR, outper-
forming all baselines including k-NN interpolation (green).

(a) White Balance vs. x (b) Exposure vs. y (c) 2D Pose Space.
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Figure 2: Pose-space visualization. (a) Red scale vs. x-position
shows white-balance structure the MLP captures. (b) Mean
scale vs. y-position shows exposure gradient. (c) 2D pose space
colored by exposure; stars = test views, circles = training
views.

MLP reflects increasing exploitation of the pose-appearance cor-
relation: the mean ignores pose entirely, nearest neighbor uses a
single reference, k-NN averages multiple references, and our MLP
learns the underlying functional relationship.

3.3 Pose-Space Analysis

Figure 2 visualizes the spatial structure that our method exploits.
Panel (a) shows that the red channel scale correlates with cam-
era x-position (white balance variation), and our MLP predictions
closely track the ground truth. Panel (b) shows that mean exposure
increases with y-position (directional illumination). Panel (c) maps
the 2D pose space with color encoding exposure, revealing the
smooth gradient that the MLP learns to extrapolate.

PE Frequency L

PE Frequency L

Figure 3: Positional encoding frequency ablation. (a) Scale
MAE increases with higher L due to overfitting. (b) Parameter
PSNR peaks at L = 2. Red star marks optimal. This demon-
strates that low-frequency encoding is critical for general-
ization.

Table 3: Scale MAE across noise levels. The MLP’s advantage
is largest at high noise (o = 0.20), where its smooth parametric
form provides implicit denoising,.

o Mean k-NN Ours (MLP) Winner
0.02 0.1009 0.0498 0.0461 MLP
0.05 0.0897 0.0631 0.0686 k-NN
0.10 0.1591 0.1472 0.1231 MLP
0.20 0.2539  0.2838 0.2258 MLP

3.4 Positional Encoding Frequency Ablation

Table 2 and Figure 3 reveal the central finding of this work: increas-
ing positional encoding frequency monotonically decreases
training loss but increases test error beyond L = 2. This is the
classic bias-variance tradeoff manifested in the frequency domain.
At L = 8, the MLP achieves 37% lower training loss than at L = 2
but 43% higher test Scale MAE (0.0952 vs. 0.0665). The optimal
L = 2 provides just enough capacity to capture the smooth spatial
structure of exposure and white balance variation without fitting
per-image noise.

3.5 Noise-Level Ablation

Table 3 and Figure 4 show performance across noise levels. The
MLP wins at 3 of 4 noise levels. At low noise (¢ = 0.02), the MLP’s
advantage is modest (7.4% over k-NN) because the spatial signal is
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(a) Scale MAE (b) PSNR
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Figure 4: Noise-level ablation. (a) Scale MAE: the MLP’s ad-
vantage grows with noise, providing implicit denoising. (b)
Parameter PSNR: the MLP maintains higher quality across
most noise levels.

Table 4: Effect of training set size on Scale MAE. The MLP
overtakes k-NN at N > 30 views.

N Mean k-NN  Ours (MLP) Winner
10 0.0994 0.1195 0.1171 MLP
20 0.1052 0.0848 0.0895 k-NN
30 0.1173 0.0829 0.0789 MLP
40 0.1105 0.0785 0.0698 MLP
50 0.1082 0.0739 0.0665 MLP

clean enough for direct interpolation. At moderate noise (¢ = 0.05),
k-NN slightly outperforms the MLP, suggesting that at this specific
noise level the MLP’s smoothness prior is slightly too aggressive.
At high noise (¢ = 0.10 and 0.20), the MLP dominates, reducing
error by 16.4% and 20.4% respectively, because its parametric form
implicitly denoises the training signal—neighboring appearance pa-
rameters are averaged through the smooth learned function rather
than propagated directly.

3.6 Training Set Size Ablation

Table 4 and Figure 5 show performance as a function of training
set size. The MLP benefits more from additional training views
than k-NN: from N = 10 to N = 50, MLP error decreases by 43%
(0.1171 to 0.0665) while k-NN decreases by 38% (0.1195 to 0.0739).
The crossover occurs at approximately N = 30, suggesting that
the MLP requires sufficient coverage of the pose space to learn the
underlying function, but then extrapolates more effectively than
local interpolation.

3.7 Test-Time Adaptation

Table 5 shows the effect of test-time adaptation (TTA) on individual
views. TTA improves scale MAE for views 0, 2, 3, and 4 (reducing it
by up to 72% for view 0), but increases bias error due to the multi-
view consistency objective pulling toward an average of nearby
training views. The net effect on aggregate PSNR is mixed: TTA
is most beneficial for views where the MLP’s initial prediction is
already close, and can hurt when the nearest training views have
substantially different appearance.

Anon.

Scale MAE vs. Training Set Size

0.12 A1 —- Mean
—A— k-NN

-@- MLP

0.11 A

0.10

0.09 ~

Scale MAE

0.08 -

0.07 1

10 15 20 25 30 35 40 45 50
Training Set Size N

Figure 5: Training set size ablation. The MLP (blue) improves
more steeply with additional views than k-NN (green), over-
taking it at N > 30.

Table 5: Test-time adaptation (TTA) results for individual
views. TTA consistently reduces scale MAE but may increase
bias error.

View Scale MAE |
Before  After

PSNR (dB) T
Before After

0 0.0327 0.0093 26.72 27.18
1 0.0963 0.1172 18.85 14.62
2 0.0407 0.0323 29.68 19.66
3 0.0674 0.0601 19.17  20.92
4 0.0459 0.0402 23.32 21.57

3.8 Method Overview

Figure 7 illustrates our two-stage pipeline. Stage 1 maps a 6-DoF
camera pose through low-frequency positional encoding (L = 2) and
an appearance MLP to produce initial appearance parameters. Stage
2 optionally refines these parameters via multi-view consistency
with nearby training views.

3.9 Error Distribution Analysis

Figure 8 shows the per-view error distribution. Our MLP achieves
both lower median error and lower variance than baselines, indi-
cating consistent performance across diverse test viewpoints.

4 CONCLUSION

We have presented a principled framework for assigning per-frame

photometric compensation parameters to novel viewpoints—an

open problem in multi-view 3D reconstruction that existing evalu-
ation protocols typically sidestep. Our key findings are:

(1) Continuous mappings outperform discrete lookup.

A pose-conditioned appearance MLP reduces Scale MAE
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TTA Convergence

—— View 0
View 1
0.08 — View 2
—— View 3
—— View 4
0.06
1%}
1%}
Q
—
0.04 4
0.02
T T T T T T
0 20 40 60 80 100

Iteration

Figure 6: Test-time adaptation convergence curves for 5 test
views. All views converge within 100 iterations, though the
final loss level varies with the quality of nearby training
views.

Stage 1: Pose-Conditioned

Camera Pose PE (L=2) + Appearance
(6-DoF) —> MLP —> Params
Multi-View Refined
Consistency —> Params

Stage 2: Test-Time Adapt.

Figure 7: Two-stage pipeline for assigning per-frame photo-
metric parameters to novel views. Stage 1 (top) provides fast
initial prediction via pose-conditioned MLP. Stage 2 (bottom)
optionally refines via multi-view photometric consistency.

by 10.0% over k-NN interpolation and 38.5% over mean
embedding, achieving 21.25 dB parameter PSNR.

(2) Low-frequency positional encoding is critical. Using
L = 2 frequencies (vs. the L = 6-8 typical for spatial encod-
ing) enforces the smoothness prior that appearance varies
slowly with viewpoint. This single design choice accounts
for a 30% error gap.

(3) Learned mappings provide implicit denoising. At high
noise levels (o = 0.20), the MLP reduces error by 20.4%
over k-NN because its smooth parametric form averages
out per-image noise.

(4) Test-time adaptation is a complementary refinement.
Multi-view consistency can improve individual predictions
by up to 72% in scale error, though it requires careful tuning
of the smoothness anchor to avoid degradation.

These results establish that the pose-to-appearance mapping,
when properly regularized via frequency control and Lipschitz

Conference’17, July 2017, Washington, DC, USA

Per-View Error Distribution

0.14 4

0.12 4

0.10 4

0.08 1

Scale MAE

0.06 4

0.04

Mean k-NN MLP

Figure 8: Per-view scale MAE distribution across test views.
Our MLP (blue) achieves both lower median and lower vari-
ance than mean embedding (red) and k-NN (green).

constraints, provides a practical and principled solution to a funda-
mental deployment challenge. Future work should validate on real-
world radiance field reconstructions, explore adaptive frequency se-
lection, and integrate with physically-grounded decompositions [6]
for enhanced interpretability.
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