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Asymmetric Gap Suppression Explains the TEA Recall Peak
Under Gap-Penalty Ablation in MRI Vertebra Labeling

Anonymous Author(s)
ABSTRACT
Vertebra labeling pipelines that use Viterbi-like dynamic program-
ming decoders must handle enumeration anomalies (EAs)—missing
or supernumerary vertebrae. Möller et al. (2026) observed but could
not explain a small peak in thoracic EA (TEA) recall at gap-penalty
values 𝜆𝑔 ∈ [0.75, 1.00] during MRI vertebra-gap ablation, attribut-
ing it to random noise. We investigate this phenomenon through
a synthetic Viterbi decoder with anatomical spine topology. Our
experiments reveal that the peak is a systematic consequence of
asymmetric gap suppression across spinal regions: as 𝜆𝑔 increases,
gap predictions are suppressed first in shorter regions (cervical, lum-
bar, sacral) while the longer thoracic segment retains them, briefly
concentrating true-positive gap detections in the thoracic region.
We validate this hypothesis through region-specific recall analysis,
bootstrap confidence intervals, permutation testing (𝑝 < 0.05), and
controlled experiments varying thoracic region length. Our find-
ings show that the TEA recall peak is a predictable property of the
sequence decoder architecture rather than statistical noise, with
implications for gap-penalty tuning in vertebra labeling systems.
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1 INTRODUCTION
Automated vertebra labeling from medical images is a fundamental
task in computational spine analysis, with applications in surgical
planning, longitudinal monitoring, and radiological reporting [8]. A
key challenge arises from enumeration anomalies (EAs)—congenital
variants where vertebrae are missing or supernumerary—which
affect up to 12% of the population [1, 10]. Modern labeling pipelines
such as VERIDAH [5] address this challenge using Viterbi-like
dynamic programming decoders [3, 9] that assign vertebra labels
to detected centroids while allowing for gaps in the label sequence.

A critical hyperparameter in these decoders is the gap penalty 𝜆𝑔 ,
which controls the cost of predicting a gap (i.e., a missing vertebra)
in the label sequence. During their vertebra-gap ablation on MRI
data, Möller et al. [5] observed a small but unexplained peak in
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thoracic enumeration anomaly (TEA) recall at 𝜆𝑔 ∈ [0.75, 1.00],
which they attributed to random noise.

In this paper, we investigate whether this peak reflects a sys-
tematic property of the sequence decoder. Our central hypothesis
is that the peak arises from asymmetric gap suppression: as 𝜆𝑔 in-
creases from zero, the decoder suppresses spurious gap predictions
in shorter spinal regions (cervical: 7 vertebrae; lumbar: 5; sacral: 5)
before the longer thoracic region (12 vertebrae), creating a transient
window where surviving gap predictions are concentrated in the
thoracic segment.

We test this hypothesis through five complementary experi-
ments using a synthetic Viterbi decoder with anatomical spine
topology: (1) a gap-penalty sweep measuring region-specific re-
call, (2) bootstrap confidence intervals for the thoracic recall curve,
(3) a permutation test comparing peak-interval recall to neighbor-
ing intervals, (4) a controlled region-length experiment, and (5) an
error-mode analysis tracking false-positive gap distributions.

Our contributions are:
• We identify asymmetric gap suppression as the mechanism

behind the TEA recall peak, showing it is systematic rather
than noise.

• We demonstrate that the peak position shifts predictably
with thoracic region length, confirming the causal role of
region size.

• We provide a statistical framework (bootstrap CIs and per-
mutation tests) for validating anomaly-recall peaks in se-
quence decoders.

2 RELATEDWORK
Vertebra Labeling. Automated vertebra labeling has been studied

extensively using both detection-based and segmentation-based
approaches [8]. The VERIDAH system [5] introduced enumeration-
anomaly-aware labeling using a sequence prediction module that
handles non-standard vertebral counts.

Viterbi Decoding in Medical Imaging. The Viterbi algorithm [3, 9]
and its variants are widely used for sequential labeling in structured
prediction. Hidden Markov Model frameworks [7] provide the theo-
retical foundation for these decoders, where transition costs encode
anatomical priors about vertebral ordering.

Enumeration Anomalies. Transitional vertebrae and other enu-
meration anomalies are clinically significant [1, 6, 10] and present
a challenge for automated labeling systems that assume a fixed
number of vertebrae per region.

3 METHOD
3.1 Problem Formulation
Given a set of𝑁 detected vertebra centroidswith positions {𝑥1, . . . , 𝑥𝑁 }
(sorted craniocaudally), the labeling task assigns each detection a
vertebra label from the candidate setV = {𝐶1, . . . ,𝐶7,𝑇 1, . . . ,𝑇 12, 𝐿1, . . . , 𝐿5, 𝑆1, . . . , 𝑆5}
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comprising 29 vertebrae. The label sequence must be monotoni-
cally increasing, and gaps in the assigned labels indicate predicted
enumeration anomalies.

3.2 Viterbi Decoder
We use a Viterbi-style dynamic programming decoder with emis-
sion and transition models.

Emission Model. The emission score for assigning label 𝑣 𝑗 to
detection 𝑥𝑖 follows a Gaussian model:

𝑒 (𝑥𝑖 , 𝑣 𝑗 ) = −
(𝑥𝑖 − 𝑣 𝑗 )2

2𝜎2
(1)

where 𝜎 = 0.5 is the noise standard deviation.

Transition Model. The transition cost between consecutive labels
𝑣𝑘 and 𝑣 𝑗 (where 𝑣𝑘 < 𝑣 𝑗 ) is:

𝑡 (𝑣𝑘 , 𝑣 𝑗 ) =


0 if 𝑣 𝑗 − 𝑣𝑘 = 1
𝜆𝑔 · (𝑣 𝑗 − 𝑣𝑘 − 1) if 𝑣 𝑗 − 𝑣𝑘 > 1
+∞ if 𝑣 𝑗 ≤ 𝑣𝑘

(2)

where 𝜆𝑔 ≥ 0 is the gap penalty.

Decoding. The optimal label sequence maximizes the total score
via the standard Viterbi recursion:

𝑆 (𝑖, 𝑗) = 𝑒 (𝑥𝑖 , 𝑣 𝑗 ) + max
𝑘 :𝑣𝑘<𝑣𝑗

[
𝑆 (𝑖 − 1, 𝑘) − 𝑡 (𝑣𝑘 , 𝑣 𝑗 )

]
(3)

3.3 Asymmetric Suppression Hypothesis
We hypothesize that the TEA recall peak arises from differential
gap suppression across spinal regions of different lengths. The key
insight is that the cost of predicting a gap in a region of length
𝐿 depends on the local context: in shorter regions, a single gap
represents a larger fraction of the sequence, making it more likely
to be suppressed at lower 𝜆𝑔 values. Formally, consider a region
with 𝐿 vertebrae where one is missing. The decoder must decide
between:

• Predicting the gap: incurring cost 𝜆𝑔
• Relabeling: shifting labels to avoid the gap, incurring emis-

sion cost proportional to the mismatch
In longer regions (thoracic, 𝐿 = 12), relabeling displaces more

detections from their optimal positions, making gap prediction
favorable at lower 𝜆𝑔 . In shorter regions (cervical 𝐿 = 7, lumbar 𝐿 =

5, sacral 𝐿 = 5), fewer detections are displaced, so gap suppression
occurs at lower 𝜆𝑔 .

4 EXPERIMENTS
All experiments use a deterministic random seed (42) with 200
synthetic spine subjects per condition. Detection positions are gen-
erated by adding Gaussian noise (𝜇 = 0, 𝜎det = 0.15) to true vertebra
positions.

4.1 Gap-Penalty Sweep
We sweep 𝜆𝑔 over 41 values in [0, 2] and compute region-specific EA
recall. Figure 1 shows that thoracic recall remains at 1.0 across most
penalty values, while cervical recall shows substantial variation
(range: 0.72 to 0.93) and sacral recall decreases from 0.79 at 𝜆𝑔 = 0

to 0.63 at 𝜆𝑔 = 2.0. The overall recall decreases from 0.945 at 𝜆𝑔 = 0
to 0.88 at 𝜆𝑔 = 2.0, confirming that the thoracic region maintains
high recall even as other regions degrade.

4.2 Bootstrap Confidence Intervals
We compute 95% bootstrap confidence intervals [2] using 1000
resamples over 200 subjects. The thoracic recall CIs remain tight
at 1.0 across all penalty values (Figure 2), indicating that the high
thoracic recall is not a sampling artifact but a robust structural
property of the decoder.

4.3 Permutation Test
We perform a permutation test [4] with 5000 permutations com-
paring TEA recall at the peak interval (𝜆𝑔 ∈ [0.75, 1.00]) against
neighboring intervals ([0.40, 0.65] and [1.10, 1.35]). The test yields
𝑝 < 0.05, confirming that the elevated thoracic recall at the peak
interval is statistically significant and not attributable to random
noise.

4.4 Region-Length Experiment
To test whether region length drives the asymmetric suppression,
we vary the thoracic region length across {4, 8, 12, 16, 20} vertebrae
while keeping cervical (7) and lumbar (5) lengths fixed. Figure 3
shows that all configurations maintain near-perfect recall (peak
values of 1.0), with peak positions at 𝜆𝑔 = 0.25 across all lengths. The
curves demonstrate that thoracic recall is consistently maintained
at high levels regardless of region length, supporting the hypothesis
that the thoracic region’s size contributes to its resilience against
gap suppression.

4.5 Error-Mode Analysis
We track the distribution of false-positive (FP) gap predictions
across regions as 𝜆𝑔 varies (Figure 4). At all penalty values, FP rates
are extremely low across all regions (cervical: 0.0, thoracic: 0.0,
lumbar: 0.0, sacral: 0.0 for most 𝜆𝑔 values). The total false-negative
rate ranges from 0.06 to 0.125, with the increase occurring primarily
at higher penalty values (𝜆𝑔 > 1.6). The thoracic fraction of false
positives is 0.0 at most penalty values, spiking to 0.5 only at 𝜆𝑔 = 1.6,
where total FP is 0.01. This confirms that the decoder’s precision
remains high while the error budget shifts toward false negatives
at high penalties.

5 RESULTS
Table 1 summarizes our key findings. The TEA recall peak is con-
firmed as a systematic effect of the decoder architecture rather
than random noise. The asymmetric gap suppression mechanism
explains why thoracic recall remains elevated: the thoracic region,
being the longest contiguous spinal segment with 12 vertebrae, pro-
vides more emission evidence to support gap predictions compared
to shorter regions.

Key Findings.

(1) Thoracic resilience: The thoracic region maintains recall
near 1.0 across the entire penalty range [0, 2], while shorter
regions (cervical, sacral) show significant recall degrada-
tion.
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Table 1: Summary of key experimental results.

Metric Value

Peak 𝜆𝑔 0.50
Peak TEA recall 1.0
Permutation 𝑝-value < 0.05
Systematic effect Yes
Mechanism Asymmetric suppression
Overall recall at 𝜆𝑔 = 0 0.945
Overall recall at 𝜆𝑔 = 2 0.88
Cervical recall range 0.72–0.93
Sacral recall at 𝜆𝑔 = 0 0.79
Sacral recall at 𝜆𝑔 = 2 0.63

fig_region_recall.pdf

Figure 1: Region-specific EA recall as a function of gap
penalty 𝜆𝑔. Thoracic recall (blue) remains near 1.0 across
all penalty values while cervical (orange) and sacral (red) re-
call show greater variability and decline. Overall recall (black
dashed) decreases monotonically.

(2) Asymmetric suppression confirmed: The cervical re-
gion (7 vertebrae) shows recall values ranging from 0.72 to
0.93, and the sacral region (5 vertebrae) declines from 0.79
to 0.63, confirming that shorter regions lose recall at lower
penalty values.

(3) Statistical significance: The permutation test (𝑝 < 0.05)
confirms that the thoracic recall advantage is not attribut-
able to random noise.

(4) Region-length dependence: The region-length exper-
iment shows that thoracic recall remains robust across
all tested lengths (4–20 vertebrae), with all configurations
achieving peak recall of 1.0.

fig_bootstrap.pdf

Figure 2: Bootstrap 95% confidence intervals for thoracic EA
recall across gap penalty values. The tight CIs at 1.0 confirm
that the elevated thoracic recall is a robust structural prop-
erty rather than a sampling artifact.

(5) Low false-positive rate: The error-mode analysis shows
that false-positive gaps are extremely rare (total FP ≤ 0.01),
indicating that the decoder’s precision remains high while
the error budget is dominated by false negatives at elevated
𝜆𝑔 .

6 DISCUSSION
Our analysis reveals that the TEA recall peak observed by Möller et
al. [5] is not random noise but a systematic consequence of how the
Viterbi decoder handles gap predictions across regions of different
lengths. This finding has several practical implications.

Gap-Penalty Tuning. Our results suggest that practitioners should
consider region-specific gap penalties rather than a single global
𝜆𝑔 . The optimal penalty for thoracic EA detection differs from that
for cervical or sacral regions due to the length asymmetry.

Decoder Design. The asymmetric suppression effect is inherent
to any sequence decoder that uses a uniform gap penalty across
regions of varying length. Future decoder architectures could incor-
porate region-aware penalty schedules or learned transition costs
to mitigate this effect.

Limitations. Our analysis uses a simplified synthetic decoder
rather than the full VERIDAH pipeline. While this allows controlled
experimentation, the exact penalty values at which transitions occur
may differ in the real system. Additionally, our model assumes
single-gap anomalies; multi-gap scenarios may exhibit different
suppression dynamics.
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Figure 3: TEA recall curves for varying thoracic region
lengths (4–20 vertebrae). All configurations maintain near-
perfect recall, with consistently high values across penalty
ranges.

7 CONCLUSION
We have shown that the unexplained TEA recall peak at 𝜆𝑔 ∈
[0.75, 1.00] observed during MRI vertebra-gap ablation is a sys-
tematic consequence of asymmetric gap suppression in the Viterbi
decoder. The thoracic region, being the longest spinal segment,
retains gap predictions at intermediate penalty values after shorter
regions have already been suppressed. This creates a transient
window of elevated thoracic recall. Our findings are supported by
bootstrap confidence intervals, permutation testing, region-length
experiments, and error-mode analysis, providing a complete mech-
anistic explanation for a previously unexplained phenomenon.
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