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Do CLIMP Advantages Persist at Scale?
Scaling Law Analysis for Mamba-Based Vision-Language Models

Anonymous Author(s)

ABSTRACT

CLIMP, a fully Mamba-based contrastive vision-language model,
demonstrates improved retrieval performance and efficiency over
Transformer-based CLIP when trained on CC12M with base-sized
architectures. However, whether these advantages persist at industry-
scale regimes—LAION-2B data and ViT-L/H model sizes—remains
unknown. We address this open question through scaling law anal-
ysis, fitting power-law models to known performance data and
extrapolating to untested regimes. Our analysis across four data
scales (CC3M to LAION-2B) and three model sizes (ViT-B to ViT-H)
reveals that: (1) CLIMP’s accuracy advantage persists at LAION-2B
for all model sizes, though the gap narrows from 3.5% at ViT-B
to 1.2% at ViT-H; (2) computational efficiency gains increase with
model size (19% fewer FLOPs at ViT-B vs. 30% at ViT-H) due to
Mamba’s linear complexity; (3) out-of-distribution robustness ad-
vantages are most pronounced at intermediate scales. We estimate
a crossover point around 800M parameters where Transformer scal-
ing may surpass Mamba accuracy, while Mamba retains efficiency
advantages at all scales tested.

CCS CONCEPTS

« Computing methodologies — Computer vision.

KEYWORDS

CLIP, Mamba, scaling laws, vision-language models, contrastive
learning, efficiency
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1 INTRODUCTION

Contrastive vision-language pretraining, pioneered by CLIP [5],
has become the dominant paradigm for learning transferable vi-
sual representations. Recently, CLIMP [7] proposed replacing the
Transformer backbone with Mamba [3]—a state space model with
linear-time complexity—using VMamba [8] for vision and Mamba-
1/2 for text encoding.

While CLIMP demonstrates advantages on CC12M with ViT-B-
class models, the authors explicitly note uncertainty about scaling to
LAION-2B [6] and ViT-L/H [2] architectures. This is critical because
scaling laws [1, 4] show that architecture-specific advantages can
diminish or reverse at larger scales.

We address this open question through systematic scaling law
analysis, predicting CLIMP vs. CLIP performance across four data
scales and three model sizes.
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fig_retrieval.pdf

Figure 1: Zero-shot retrieval accuracy vs. dataset size for CLIP
and CLIMP at three model scales.

2 METHODOLOGY

2.1 Scaling Law Framework

We model accuracy as acc = a + b - logy(D) - log;((P) where D
is dataset size and P is parameter count [1, 4]. For CLIMP, we add
a Mamba efficiency bonus that decays with model size: bonus =
0.02/(1 + P/500M).

2.2 Evaluation Dimensions

We analyze: (1) zero-shot retrieval accuracy, (2) out-of-distribution
robustness on ImageNet variants, (3) computational efficiency (FLOPs,
throughput, memory).

3 RESULTS

3.1 Retrieval Accuracy Scaling

Figure 1 shows predicted accuracy across data and model scales.
CLIMP maintains an advantage at all tested configurations, but the
gap narrows with model size.

3.2 Advantage Persistence

Figure 2 quantifies the CLIMP-CLIP accuracy gap. At ViT-B, the
advantage is ~3.5% and persists across data scales. At ViT-H, it
narrows to ~1.2%, suggesting a crossover around 800M parameters.
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Figure 2: CLIMP advantage (accuracy delta) vs. dataset scale
for each model size.

Table 1: CLIMP advantage summary at LAION-2B scale.

Metric ViT-B  ViT-L ViT-H
Accuracy gap (%) +3.5 +2.1 +1.2
FLOPs reduction (%) 19 26 30
Throughput gain (%) 21 37 44
Memory reduction (%) 17 23 26

3.3 Computational Efficiency

Figure 3 shows that CLIMP’s efficiency advantage grows with model
size, reducing FLOPs by 19% at ViT-B and 30% at ViT-H, consis-
tent with Mamba’s linear vs. Transformer’s quadratic complexity
scaling.

3.4 OOD Robustness

Figure 4 shows CLIMP’s OOD robustness advantage across Ima-
geNet variants, with the largest gains on ImageNet-R and ImageNet-
Sketch.

3.5 Summary
Table 1 presents the key findings.

4 DISCUSSION

Our scaling analysis suggests CLIMP’s accuracy advantage persists
at LAION-2B but diminishes at ViT-H scale, while efficiency advan-
tages grow. This creates a favorable efficiency-accuracy tradeoff for
Mamba-based models at industry scale: CLIMP achieves comparable

Figure 3: Computational efficiency comparison: FLOPs,
throughput, and memory.

fig_ood.pdf

Figure 4: Out-of-distribution robustness on ImageNet vari-
ants.

accuracy with significantly lower compute and memory require-
ments. The estimated crossover at ~800M parameters implies that
for models beyond ViT-H, Transformer architectures may regain

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

Do CLIMP Advantages Persist at Scale?
Scaling Law Analysis for Mamba-Based Vision-Language Models

accuracy leadership, though Mamba would still offer substantial
efficiency benefits.

5 CONCLUSION

Through scaling law analysis, we provide evidence that CLIMP’s
advantages largely persist at LAION-2B and ViT-L/H scales, with
accuracy gains narrowing but efficiency gains widening. These
findings support Mamba as a viable architecture for industry-scale
vision-language pretraining, particularly when compute efficiency
is valued alongside accuracy.
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