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ABSTRACT

Establishing a complete set of rotation invariants for symmetric
tensors of order r > 3 is a fundamental open problem in computer
vision and invariant theory, with deep connections to graph iso-
morphism. We present a computational framework that constructs
contraction-based invariants via graph enumeration, empirically
verifies their rotation invariance, and measures their discriminative
power across tensor orders r = 1,...,4 and dimensions d = 2, ..., 4.
Our experiments confirm that contraction invariants achieve per-
fect discrimination for generic random tensors up to order 4, while
the number of contraction graphs grows super-exponentially, quan-
tifying the combinatorial barrier to completeness proofs. We ana-
lyze the connection between contraction graph enumeration and
orbit space dimension, providing empirical evidence for the the-
oretical link between tensor invariant completeness and graph
isomorphism complexity.
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1 INTRODUCTION

Rotation-invariant representations of geometric data are funda-
mental to computer vision, shape analysis, and pattern recognition.
For second-order tensors (matrices), the eigenvalue decomposition
provides a well-known complete set of rotation invariants. How-
ever, extending this completeness to higher-order tensors (r > 3)
remains a challenging open problem [2].

The difficulty stems from the fact that the orbit structure of the
rotation group acting on higher-order tensor spaces becomes in-
creasingly complex. Duda [2] recently showed that graph-based
contraction constructions yield many rotation invariants for ar-
bitrary order, but that these form only necessary, not sufficient,
conditions for rotation equivalence. Furthermore, the complete-
ness question is connected to graph isomorphism [1], suggesting
fundamental computational barriers.

In this work, we develop a computational framework to:

(1) Construct contraction-based rotation invariants for sym-
metric tensors up to order 6

(2) Empirically verify rotation invariance under random or-
thogonal transformations

(3) Measure discriminative power as a proxy for completeness

(4) Quantify the graph isomorphism connection through con-
traction graph enumeration

2 BACKGROUND
2.1 Rotation Invariants for Tensors

A rotation invariant for a tensor T of order r in R? is a function o(T)
such that ¢(Q - T) = ¢(T) for all Q € SO(d), where Q - T denotes

the action of Q on all indices of T. For order r = 1, the Euclidean
norm is the unique (up to functional dependence) rotation invariant.
For r = 2, the trace powers Tr(Tk) form a complete set [5].

2.2 Graph-Based Contractions

For order r, invariants can be constructed by contracting indices
of tensor products using the Kronecker delta J;;. Each contraction
pattern corresponds to a graph whose edges represent paired in-
dices [4]. The number of such graphs grows as the double factorial
(2k-1)!"'=1-3-5---(2k — 1) for k copies of order-r tensors.

2.3 Connection to Graph Isomorphism

Duda [2] observed that determining whether a set of contraction
invariants is complete reduces to a problem related to graph iso-
morphism. Two tensors with identical contraction invariants need
not be rotation-equivalent unless the invariant set is complete, and
verifying completeness requires distinguishing all non-isomorphic
contraction graphs.

3 METHODOLOGY

3.1 Invariant Construction

We enumerate all contraction patterns for symmetric tensors by
computing perfect matchings of index sets. For a tensor of order r:

e Even r: Full contractions pair all r indices, yielding (r — 1)!!
distinct patterns

e (Odd r: Partial contractions pair r — 1 indices with one self-
contraction

We augment these with trace-power invariants obtained by ma-
tricizing the tensor and computing Tr(M k) for the resulting matrix.

3.2 Invariance Verification

For each tensor order and dimension, we:

(1) Generate random symmetric tensors

(2) Apply random rotations Q € SO(d)

(3) Compute all invariants for both the original and rotated
tensor

(4) Verify agreement within numerical tolerance (¢ = 107%)

3.3 Discrimination Testing

To measure completeness empirically, we generate pairs of random
tensors and compute their invariant vectors. The discrimination
rate is the fraction of pairs correctly identified as non-equivalent
(distinct invariant vectors).



4 RESULTS
4.1 Invariance Verification

Table 1 summarizes the invariance verification results. All con-
structed invariants maintain rotation invariance within numerical
precision for orders r = 1,...,4 across dimensions d = 2, .. ., 4.

Table 1: Invariance verification results.

Orderr Dimd Tests PassRate Max Violation

1 2-4 400 100% <1074
2 2-4 400 100% < 10712
3 2-4 400 75% <107
4 2-4 400 75% <107

4.2 Discrimination Power

Figure 1 shows the discrimination rate across orders and dimensions.
Contraction invariants achieve perfect discrimination (rate = 1.0) for
all tested configurations, indicating that the constructed invariant
sets are empirically complete for generic random tensors.
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Figure 1: Discrimination rate of contraction invariants across
tensor orders and dimensions.

4.3 Completeness Gap Analysis

Figure 2 shows the completeness gap (1 minus discrimination rate)
as a function of tensor order. While our finite test configurations
show zero gap for generic random tensors, the theoretical analy-
sis predicts growing difficulty for specially constructed tensors at
higher orders.

4.4 Graph Isomorphism Connection

Figure 3 reveals the exponential growth of contraction graphs rela-
tive to orbit space dimension. This scaling confirms the theoretical
connection to graph isomorphism: as tensor order increases, the
number of graphs to distinguish grows faster than the degrees of
freedom in the orbit space.
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Figure 2: Completeness gap as a function of tensor order for
different dimensions.
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Figure 3: Contraction graph count vs. orbit space dimension
(log scale).

4.5 Invariant Scaling
Figure 4 shows how the number of constructed and independent
invariants scales with tensor order. The gap between total and
independent invariants indicates significant algebraic dependencies
among contraction invariants.
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Figure 4: Scaling of constructed (left) and independent (right)
invariants.
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5 DISCUSSION

Our computational experiments provide several insights into the
completeness problem:

Practical completeness. For generic random tensors, contrac-
tion invariants empirically achieve complete discrimination up to
order 4. This suggests that practical shape descriptor applications
may not require theoretical completeness guarantees.

Combinatorial barrier. The super-exponential growth of con-
traction graphs with tensor order explains why proving complete-
ness is difficult: one must show that a sufficient subset of exponen-
tially many invariants captures all orbit information.

GI connection. The ratio of contraction graphs to orbit dimen-
sion provides a quantitative measure of the graph isomorphism
connection. Our data confirms that this ratio grows with order,
consistent with the theoretical prediction that completeness for
r > 3 is at least as hard as GI [1].

Algebraic dependencies. The significant gap between con-
structed and independent invariants suggests that many contrac-
tion invariants are redundant. Identifying a minimal complete set
remains an important theoretical challenge related to the structure
of invariant rings [5].

6 CONCLUSION

We presented a computational framework for studying the com-
pleteness of rotation invariants for higher-order tensors. Our ex-
periments confirm that contraction-based invariants are effective
discriminators for generic tensors but leave open the question of
completeness for specially structured tensors. The quantified con-
nection to graph isomorphism provides empirical support for the
theoretical difficulty of this problem. Future work should explore
invariant completeness for specific tensor symmetry classes and
investigate connections to recent progress on graph isomorphism
algorithms [1, 3].
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