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ABSTRACT

We develop and evaluate rotation-invariant shape similarity met-
rics constructed from vectors of tensor-based moment invariants.
Using central moment tensors of orders 2—4 computed from point
cloud representations, we extract rotation-invariant descriptors
and compare four distance metrics: Euclidean, cosine, normalized
Euclidean, and Mahalanobis. Experiments on synthetic 2D shape
datasets evaluate retrieval precision, rotation consistency, noise
robustness, and rank correlation with ground-truth class structure.
Our results show that all metrics achieve near-perfect rotation con-
sistency (> 0.999), with Euclidean and normalized Euclidean pro-
viding the best retrieval precision. Higher-order tensor invariants
improve discrimination between shapes with similar second-order
statistics.
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1 INTRODUCTION

Shape similarity measurement is fundamental to computer vision
tasks including object recognition, shape retrieval, and cluster-
ing [5]. A key challenge is designing metrics that are invariant to
rigid transformations, particularly rotations, so that shapes differing
only by orientation are considered identical.

Traditional approaches either align shapes before comparison
(computationally expensive) or use rotation-invariant descriptors [1,
3]. Duda [2] recently proposed using higher-order central moment
tensor invariants as shape descriptors, leaving open the design of
effective similarity metrics on these invariant vectors.

We address this open problem by systematically constructing
and evaluating four metric families on tensor invariant descriptors,
studying the effects of tensor order, noise, and dimensionality.

2 METHODOLOGY

2.1 Invariant Descriptor Construction

For a shape represented as a point cloud {x1,...,x,} € R?, we
compute the central moment tensor of order r:

1 n

M, = - Z(xi - x)®r
n 4
i=1

where x is the centroid. From each M,, we extract rotation invari-
ants including:

Frobenius norm || M, || g

Trace powers of matricizations
Singular value spectra

Index contraction sums

These are concatenated across orders r = 2,3, ..., rmax to form a
descriptor vector ¢(S) € RP.

2.2 Similarity Metrics

Given invariant vectors ¢1, ¢2, we evaluate:

(1) Euclidean: dg = [|$1 — ¢2l2
(2) Cosine: do =1 - iy
(3) Normalized Euclidean: dy = ||(¢1 — ¢2) @ ol|2 where o

contains per-feature standard deviations

(4) Mahalanobis: dyr = /(1 — ¢2)T2~1(¢1 — o) [4]

3 EXPERIMENTAL SETUP

We generate 5 shape classes with 8 samples each as 2D parametric
curves with class-dependent frequency and amplitude parameters.
Shapes are represented as 100-point clouds. We evaluate at noise
levels o € {0,0.05,0.1} added to descriptor vectors.

4 RESULTS

4.1 Metric Comparison

Figure 1 compares all metrics. Euclidean distance achieves the high-
est average retrieval precision (0.758), followed by normalized Eu-
clidean (0.742) and cosine (0.725). All metrics achieve near-perfect
rotation consistency (> 0.9999).
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Figure 1: Comparison of shape similarity metrics across eval-
uation criteria.

4.2 Noise Robustness

Figure 2 shows retrieval precision as a function of noise level. All
metrics degrade gracefully, with cosine distance showing the most
stability due to its scale invariance.

4.3 Effect of Tensor Order

Figure 3 demonstrates that including higher-order invariants (order
3) improves retrieval precision for all metrics, as these capture
shape features beyond second-order statistics.



Noise Robustness of Shape Similarity Metrics
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Figure 2: Retrieval precision vs. noise level for each metric.

Effect of Tensor Order on Retrieval Performance
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Figure 3: Retrieval precision vs. maximum tensor order in-

cluded.

4.4 Rotation Consistency

All metrics achieve rotation consistency exceeding 0.9999 across all
configurations, confirming that the underlying tensor invariants
are truly rotation-invariant and that the metrics faithfully preserve
this invariance.

5 DISCUSSION

Our experiments reveal several design principles for rotation-invariant
shape similarity:

Simple metrics suffice. The standard Euclidean distance on
invariant vectors performs comparably to more sophisticated al-
ternatives, suggesting that the quality of the invariant descriptor
matters more than the choice of metric.

Normalization helps selectively. Per-feature normalization
improves performance when invariants span different magnitude
scales, but the Mahalanobis distance can overfit to training statistics
with limited samples.

Higher orders are beneficial. Including third-order moment
invariants consistently improves discrimination, supporting the
theoretical value of higher-order descriptors [2].

Anon.

6 CONCLUSION

We addressed the open problem of designing shape similarity met-
rics for tensor-based rotation invariants. Our evaluation shows that
Euclidean and normalized Euclidean distances on multi-order in-
variant vectors provide effective, efficient, and rotation-consistent
shape comparison. The framework generalizes naturally to higher
dimensions and tensor orders, with performance improving as more
invariants are included.
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