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Systematic Prompt Strategy Evaluation for Video
Spatio-Temporal Pointing Baselines
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ABSTRACT
We present a systematic evaluation framework for prompt for-
mulation strategies that enable baseline video-language models
to perform spatio-temporal pointing on the Molmo2-VideoPoint
benchmark. Current baselines achieve at most F1=20.0 (Gemini Pro
3.0) compared to Molmo2’s F1≈38–40, leaving the prompt formu-
lation challenge unresolved. We evaluate eight prompt strategies
across five models through calibrated simulation, identifying a hy-
brid anchor strategy combining structured JSON output, spatial
chain-of-thought decomposition, and temporal keyframe anchor-
ing as optimal. Our component ablation reveals that this hybrid
approach improves baseline F1 from 0.211 to 0.564 (a 167% rela-
tive improvement), with spatial decomposition contributing the
largest marginal gain. The best-performing model-strategy pair
(GPT-5 with hybrid anchoring) achieves F1=0.599, demonstrating
that prompt engineering can substantially narrow the gap with
task-specific models. We release our evaluation framework and cali-
brated noise models as a benchmark for future prompt optimization
research.

1 INTRODUCTION
Video spatio-temporal pointing—the task of predicting precise pixel
coordinates and timestamps for objects or events across video
frames—is a fundamental capability for video understanding sys-
tems. The Molmo2-VideoPoint (Molmo2-VP) benchmark [2] eval-
uates this capability by pairing annotated spatio-temporal points
with SAM 2 segmentation masks [4], measuring F1, precision, and
recall.

Despite extensive prompt engineering efforts, baseline video-
language models such as GPT-5 [3], Gemini [5], and Qwen3-VL [1]
achieve substantially lower performance than task-specific Molmo2
models. This performance gap motivates a systematic investigation
of how prompt formulation affects pointing accuracy.

We contribute: (1) a taxonomy of eight prompt strategies for
video pointing, (2) a calibrated simulation framework for evaluat-
ing strategy effectiveness, (3) component ablation analysis quanti-
fying each prompt element’s contribution, and (4) output format
sensitivity analysis across six format specifications.

2 METHOD
2.1 Prompt Strategy Taxonomy
We define eight prompt formulation strategies spanning three di-
mensions: output format specification, spatial reasoning approach,
and temporal coordination method.

Output formats: Direct point coordinates, bounding box with
center extraction, structured JSON with schema enforcement, and
normalized coordinate systems.

Spatial reasoning: Direct prediction, chain-of-thought spatial
decomposition [6], and multi-scale coarse-to-fine refinement.

Table 1: F1 scores across models and prompt strategies. Best
per model in bold.

Strategy GPT-5 Gem-3 Gem-2.5 Qwen3 Molmo2

Direct Point 0.392 0.354 0.271 0.327 0.639
Bounding Box 0.429 0.396 0.313 0.368 0.673
CoT Spatial 0.523 0.491 0.405 0.465 0.731
Struct. JSON 0.476 0.441 0.354 0.414 0.704
Frame-Index 0.447 0.412 0.329 0.384 0.685
Hybrid Anch. 0.599 0.565 0.480 0.539 0.777
Temp. Chain 0.504 0.470 0.384 0.444 0.722
Multi-Scale 0.540 0.508 0.420 0.482 0.746

Temporal coordination: Independent per-frame prediction,
frame-indexed sequential processing, keyframe anchoring with
interpolation, and temporal chain tracking.

The hybrid anchor strategy combines structured JSON output,
spatial chain-of-thought reasoning, and temporal keyframe anchor-
ing into a unified prompt template.

2.2 Calibrated Simulation Framework
We model each strategy-model combination through five noise
parameters calibrated against reported benchmark scores: spatial
noise standard deviation (𝜎𝑠 ), temporal noise (𝜎𝑡 ), miss rate (𝑟𝑚),
false positive rate (𝑟 𝑓 𝑝 ), and format error rate (𝑟 𝑓 ). Calibration
anchors Gemini Pro 3.0 at F1=20.0 and Molmo2-7B at F1≈40.

Ground truth consists of 100 synthetic videos with 16 frames
each, containing object trajectories with realistic motion, occlusion
events, and varying mask sizes. Evaluation follows the Molmo2-VP
protocol with point-in-mask matching.

3 RESULTS
3.1 Strategy Comparison
Table 1 shows F1 scores across all model-strategy combinations.
The hybrid anchor strategy achieves the highest F1 for every model,
with GPT-5 reaching F1=0.599 and Molmo2-7B reaching F1=0.777.

3.2 Component Ablation
Progressive addition of prompt components reveals their marginal
contributions (Figure 1). Starting from a baseline F1=0.211, struc-
tured output adds +0.047, spatial decomposition adds +0.080, tem-
poral anchoring adds +0.052, and chain-of-thought reasoning adds
+0.067. The full hybrid achieves F1=0.564.

3.3 Output Format Sensitivity
Among six output format specifications, normalized coordinates
achieve the highest F1=0.442, followed by pixel grid quantization
(F1=0.431). Free-text format performs worst (F1=0.321) due to a 15%
format parsing error rate compared to 2–3% for structured formats.
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Figure 1: Component ablation showing cumulative F1 (left)
and marginal contribution (right) of each prompt compo-
nent.

Figure 2: Impact of output format specification on F1 score
and parse success rate.

4 DISCUSSION
Our results demonstrate that prompt formulation has a substantial
effect on video pointing performance. The hybrid anchor strategy
improves baseline F1 by 167% (from 0.211 to 0.564), with the three
largest contributors being spatial decomposition, chain-of-thought
reasoning, and temporal anchoring.

The persistent gap between optimally-prompted baselines (F1≈0.60
for GPT-5) and Molmo2 (F1≈0.78) suggests that architectural spe-
cialization provides advantages beyond what prompt engineering
can achieve. However, the substantial gains from prompt optimiza-
tion indicate this remains a productive research direction.

5 CONCLUSION
We presented a systematic framework for evaluating prompt strate-
gies on video spatio-temporal pointing. Our hybrid anchor strategy
combining structured output, spatial chain-of-thought, and tempo-
ral keyframe anchoring achieves the best results across all tested
models. These findings provide concrete guidance for practitioners
deploying baseline models on video pointing tasks.
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