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ABSTRACT
Extending the smooth, semantically coherent transformations of
diffusion-based 2D image morphing to 3D content remains an open
challenge. We present a computational framework that evaluates
four latent-space interpolation strategies—linear, spherical (SLERP),
Bézier, and attention-guided—for 3D shape morphing across vary-
ing latent dimensions. Using parametric 3D meshes encoded into
structured latent spaces, we measure morphing quality along five
dimensions: smoothness, semantic coherence, temporal consistency,
geometry preservation, and appearance quality. Our experiments
show that attention-guided interpolation achieves the highest se-
mantic coherence, while spherical interpolation provides superior
smoothness. All methods maintain perfect geometry preservation,
and latent dimension primarily affects computation cost rather than
quality. These results provide design guidelines for extending 2D
diffusion morphing techniques to 3D content generation.
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1 INTRODUCTION
Diffusion-based generative models have revolutionized 2D image
morphing, producing smooth and semantically meaningful transi-
tions between images [1, 4]. However, extending these capabilities
to 3D content—where geometry, texture, and multi-view consis-
tency must be maintained simultaneously—remains a significant
open challenge [6].

The difficulty arises from the higher-dimensional nature of 3D
representations and the need to preserve geometric validity through-
out the morphing trajectory. While neural implicit representations
like DeepSDF [3] and NeRF [2] provide continuous 3D represen-
tations, designing interpolation strategies that produce plausible
intermediate shapes requires careful consideration of the latent
space geometry.

We address this challenge by systematically evaluating inter-
polation strategies in structured latent spaces for 3D morphing,
measuring quality across multiple dimensions.

2 METHODOLOGY
2.1 3D Shape Representation
We represent 3D shapes as parametric meshes with vertices 𝑉 ∈
R𝑁×3, normals 𝑁 ∈ R𝑁×3, and appearance features 𝐹 ∈ R𝑁×3.
Each mesh is encoded to a latent vector 𝑧 ∈ R𝑑 via projection onto
a structured basis.

2.2 Interpolation Methods
Given source latent 𝑧𝑠 and target 𝑧𝑡 , we evaluate:

(1) Linear: 𝑧 (𝑡) = (1 − 𝑡)𝑧𝑠 + 𝑡𝑧𝑡

(2) Spherical (SLERP): 𝑧 (𝑡) = sin( (1−𝑡 )𝜔 )
sin𝜔 𝑧𝑠 + sin(𝑡𝜔 )

sin𝜔 𝑧𝑡 [5]
(3) Bézier: Quadratic curve with learned midpoint control
(4) Attention-guided: Per-dimension adaptive blending based

on feature importance: 𝑧𝑖 (𝑡) = (1 − 𝛼𝑖 (𝑡))𝑧𝑠,𝑖 + 𝛼𝑖 (𝑡)𝑧𝑡,𝑖
where 𝛼𝑖 depends on |𝑧𝑡,𝑖 − 𝑧𝑠,𝑖 |

2.3 Quality Metrics
We evaluate five quality dimensions:

• Smoothness: Second-order finite differences of the trajec-
tory

• Semantic coherence: Interpolation of bounding box di-
mensions

• Temporal consistency: Uniformity of inter-frame vertex
displacement

• Geometry preservation: Absence of degenerate vertices
• Appearance quality: Smoothness of feature interpolation

3 RESULTS
3.1 Method Comparison
Figure 1 compares all methods across quality dimensions. Attention-
guided interpolation achieves the highest semantic coherence (0.998),
while all methods achieve near-perfect smoothness (> 0.99) and
geometry preservation (1.0).

Figure 1: Comparison of interpolation methods across five
quality dimensions.

3.2 Latent Dimension Effect
Figure 2 shows that quality metrics remain stable across latent
dimensions 32–128, suggesting that even compact latent spaces
suffice for smooth 3D morphing.

3.3 Quality Tradeoffs
Figure 3 reveals that smoothness and semantic coherence are largely
independent, with attention-guided methods achieving the best
coherence without sacrificing smoothness.



Anon.

Figure 2: Effect of latent space dimension on smoothness,
coherence, and consistency.

Figure 3: Smoothness vs. semantic coherence tradeoff across
methods.

3.4 Computation Time
Figure 4 shows that linear interpolation is fastest (3.5ms per pair),
while attention-guided addsmodest overhead (12.7ms) for improved
coherence.

Figure 4: Per-pair computation time for each interpolation
method.

4 DISCUSSION
Our results provide several insights for extending 2D morphing to
3D:

Structured latent spaces enable smooth 3Dmorphing.When
3D shapes are encoded into well-structured latent spaces, even sim-
ple linear interpolation produces smooth, geometry-preserving
morphs. This suggests that the quality of the latent representation
is more critical than the interpolation strategy.

Attention-guided interpolation improves semantic coher-
ence. By adapting the interpolation rate per feature dimension
based on importance, attention-guided methods better preserve
semantic properties during morphing, analogous to how attention
mechanisms improve 2D diffusion morphing.

Temporal consistency remains challenging. All methods
achieve relatively lower temporal consistency scores (∼0.4), indicat-
ing that uniform inter-frame displacement is difficult to guarantee
in latent-space interpolation. This points to the need for explicit
temporal regularization.

5 CONCLUSION
We presented a systematic evaluation of latent-space interpolation
strategies for 3D morphing, providing empirical guidance for ex-
tending 2D diffusion morphing to 3D content. Attention-guided in-
terpolation in structured latent spaces emerges as the most promis-
ing approach, achieving the best balance of smoothness, semantic
coherence, and efficiency. Future work should address topology-
changing morphs and integrate multi-view consistency constraints.
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