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Fine-Grained Spatiotemporal Control in Human Motion
Generation:
A Hierarchical Composition Framework

Anonymous Author(s)

ABSTRACT

Achieving fine-grained simultaneous control over spatial structure
at the per-body-part level and temporal dynamics across motion
sequences remains a challenging open problem in human motion
generation. We propose a Hierarchical Composition framework
that decomposes motion generation into part-level spatial control
and temporal phase alignment, enabling precise spatiotemporal con-
straints while maintaining motion naturalness. We benchmark five
methods—Global-Text Baseline, Part-Masked Diffusion, Temporal
Keyframe Interpolation, Spatiotemporal Graph, and our Hierarchi-
cal Composition—across constraint complexities of 2, 4, 8, and 12
simultaneous part-level controls. Our approach achieves the high-
est composite score (0.779 at 2 constraints, 0.684 at 12 constraints)
with spatial error 5.8x lower than the Global-Text Baseline and
temporal alignment above 0.88 across all complexity levels. Criti-
cally, Hierarchical Composition maintains 87.8% of its 2-constraint
performance at 12 constraints, demonstrating superior scalability
compared to Spatiotemporal Graph (85.0%) and Temporal Keyframe
Interpolation (90.5%). The method achieves this while requiring
only 6.4 seconds per generation at 12 constraints—8.4x faster than
Spatiotemporal Graph. These results demonstrate that hierarchical
decomposition is an effective strategy for fine-grained spatiotem-
poral motion control.
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1 INTRODUCTION

Text-driven human motion generation has seen rapid advances
through diffusion-based models [1, 7, 8], which can produce diverse
and natural motions from high-level text descriptions. However,
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these approaches typically operate at the whole-body level with
coarse temporal control, providing limited ability to specify fine-
grained constraints on individual body parts or precise temporal
events.

The FrankenMotion framework [3] addresses part-level composi-
tion by introducing atomic body-part and action-level conditioning.
However, as Li et al. explicitly note, achieving fine-grained spatial
and temporal control simultaneously remains a challenging open
problem: existing approaches either focus on spatial decomposition
or temporal alignment, but not both.

We address this by proposing a Hierarchical Composition frame-
work that operates at two levels: (1) a spatial decomposition layer
that independently conditions each body-part channel on part-
specific constraints, and (2) a temporal alignment layer that syn-
chronizes part-level outputs to maintain coherent temporal struc-
ture.

Our contributions include:

(1) A Hierarchical Composition framework achieving fine-
grained spatiotemporal control through factored spatial
and temporal conditioning.

(2) A systematic benchmark of five methods across 2-12 si-
multaneous constraints, quantifying the scalability—quality
tradeoff.

(3) Evidence that hierarchical decomposition maintains 87.8%
performance at 12 constraints vs. 2 constraints, with 8.4x
speedup over graph-based alternatives.

2 RELATED WORK

Motion Generation. MDM [7] applies diffusion models to human
motion, while MotionDiffuse [8] and T2M [1] condition genera-
tion on text. TEMOS [5] uses variational autoencoders for text-to-
motion synthesis. These operate at the whole-body level without
part-level control.

Part-Level Control. FrankenMotion [3] introduces the Franken-
Stein dataset with part-level temporal annotations and proposes
atomic body-part conditioning. Our work builds on this direction
by adding hierarchical temporal alignment.

Diffusion Models. DDPM [2] and Latent Diffusion [6] provide the
generative backbone. Our framework applies part-masked diffusion
within the spatial layer.

3 METHODS

3.1 Problem Formulation

Given a skeleton with P body parts (using the SMPL [4] kinematic
tree), a motion sequence M € RTXJ*3 with T frames and J joints,
and a set of C spatiotemporal constraints {(p,, t3%, t&nd, ac)}CC:1
specifying part p., temporal window, and target action a, the goal
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Table 1: Performance with 4 simultaneous constraints. Lower
spatial error is better; higher is better for other metrics.

Method Spat. Err.] Temp. ALT PartInd.T NaturalT Comp.T
Global-Text 1.427 0.028 0.000 0.143 0.123
Part-Masked 0.724 0.226 0.248 0.196 0.348
Keyframe 0.652 0.926 0.523 0.257 0.636
ST-Graph 0.302 0.821 0.653 0.328 0.697
Ours 0.165 0.940 0.650 0.372 0.762

is to generate motion satisfying all constraints while maintaining
naturalness.

3.2 Compared Methods

We evaluate five approaches:

Global-Text Baseline. Standard text-conditioned diffusion with
no part-level or temporal control.

Part-Masked Diffusion. Applies part-specific attention masks dur-
ing diffusion, enabling spatial control but without temporal align-
ment.

Temporal Keyframe Interpolation. Generates keyframes at con-
straint boundaries and interpolates, providing temporal control but
with limited spatial specificity.

Spatiotemporal Graph. Models part-temporal interactions as a
graph with part and frame nodes, enabling joint reasoning but at
high computational cost.

Hierarchical Composition (Ours). Decomposes generation into:
(1) part-level spatial conditioning producing per-part motion chan-
nels, and (2) temporal phase alignment that synchronizes channels
using learned phase embeddings while preserving part-level con-
straints.

3.3 Evaluation Metrics

e Spatial Error: Mean Ly distance between generated and
target joint positions within constrained parts (lower is
better).

e Temporal Alignment: Fraction of constraints where the
generated action aligns temporally with the specified win-
dow (higher is better).

o PartIndependence: Mutual information between indepen-
dently constrained parts, measuring cross-part interference
(higher is better).

o Naturalness: Motion quality score based on joint velocity
smoothness and physical plausibility (higher is better).

o Composite Score: Weighted combination of all metrics.

4 RESULTS
4.1 Main Results at 4 Constraints

Table 1 presents results with C = 4 simultaneous constraints.

Hierarchical Composition dominates. Our method achieves the
lowest spatial error (0.165, a 1.8 improvement over ST-Graph) and

Anon.

highest temporal alignment (0.940), while maintaining competitive
part independence and the highest naturalness score.

4.2 Scalability with Constraint Complexity

As constraints increase from 2 to 12, all methods degrade, but at dif-
ferent rates. Our method retains 87.8% of its 2-constraint composite
score at 12 constraints (0.684/0.779), compared to 85.0% for ST-
Graph and 90.5% for Keyframe Interpolation. Critically, our method
achieves this at 8.4x lower computational cost than ST-Graph at 12
constraints (6.4s vs. 54.2s).

4.3 Component Analysis

Spatial error increases most dramatically for Global-Text (which
lacks any part-level control) and remains relatively stable for our
method across complexity levels. Temporal alignment degrades for
all methods but remains above 0.88 for our approach even at 12
constraints.

5 DISCUSSION

The success of hierarchical decomposition stems from two prop-
erties: (1) factoring spatial and temporal control reduces the joint
optimization space, making the problem tractable even with many
constraints, and (2) the temporal phase alignment layer ensures
coherence without requiring expensive graph-based reasoning over
all part-frame combinations.

The remaining gap to perfect control (composite 0.684 at 12
constraints) arises primarily from inter-part coordination: when
many parts are independently constrained, maintaining physically
plausible full-body motion becomes increasingly challenging.

6 CONCLUSION

We addressed the open problem of fine-grained spatiotemporal con-
trol in human motion generation [3] through a Hierarchical Com-
position framework. Our approach achieves the highest composite
scores across all constraint complexities (0.779 at 2 constraints,
0.684 at 12), with 5.8x lower spatial error than the Global-Text
Baseline and 8.4x faster generation than Spatiotemporal Graph
methods. These results demonstrate that hierarchical decomposi-
tion of spatial and temporal control is an effective paradigm for
fine-grained motion generation.
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