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On the Flexibility of Regularization Hyperparameters
in 3D Gaussian Splatting Under Adaptive Optimizers
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ABSTRACT

3D Gaussian Splatting (3DGS) pipelines employ scalar hyperpa-
rameters to control the strength of regularization losses such as
opacity entropy and scale penalties. Practitioners assume that vary-
ing these weights proportionally adjusts the effective regularization
strength. We show that this assumption fails under the Adam opti-
mizer, which is standard in 3DGS. Through controlled simulation
experiments on a simplified Gaussian splatting model, we intro-
duce the Effective Regularization Ratio (ERR)—the fraction of the
optimizer’s parameter update attributable to regularization—and
characterize its response to hyperparameter changes. Our experi-
ments reveal three findings: (1) the ERR-vs-A relationship exhibits a
sub-linear log-log slope of 0.85 under Adam compared to 1.0 under
SGD, meaning a 500X increase in A yields only ~142X increase in
effective strength; (2) changing one regularization weight affects
the effective strength of other terms through a cross-coupling ratio
of 0.034; and (3) ERR varies by up to 14.2X across parameter types
(position, scale, opacity, color) for the same A value. We further
propose an adaptive A-scheduling algorithm that monitors ERR on-
line and adjusts A to maintain a target ratio, reducing ERR variance
by 43.8% compared to fixed scheduling. Our results confirm that
standard hyperparameters provide insufficient flexibility for con-
trolling regularization in 3DGS under adaptive gradient methods
and motivate decoupled optimization strategies.
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1 INTRODUCTION

3D Gaussian Splatting (3DGS) [7] has emerged as a leading rep-
resentation for real-time radiance field rendering, achieving state-
of-the-art novel view synthesis quality while enabling real-time
rendering through rasterization of anisotropic Gaussian primitives.
A standard 3DGS training pipeline optimizes millions of Gauss-
ian parameters (positions, covariances, opacities, and spherical
harmonics coefficients) via the Adam optimizer [8] to minimize
a photometric reconstruction loss, augmented by regularization
terms that encourage desirable geometric properties.

Common regularization losses in 3DGS include opacity entropy
penalties (promoting binary opacities to suppress floater artifacts) [4],
scale regularization (preventing needle-like or excessively large
Gaussians) [5], and depth/normal consistency losses (enforcing
multi-view geometric coherence) [14]. Each regularization term
is weighted by a scalar hyperparameter A, and the total training
objective is:

-C = Lrecon + Z Ak Lr(ekg) (1)
k

A natural expectation is that A provides linear control: doubling

Ak should double the influence of Lr(écg) on the parameter trajectory.
However, Ding et al. [3] recently observed that this assumption is
questionable when using adaptive gradient optimizers, writing that
“the regularization loss is thought to be controlled through hyper-
parameters, yet it remains unclear whether they provide sufficient
flexibility.” This motivates their proposal for decoupled optimization
in 3DGS.

In this work, we directly investigate this open question. We
define the Effective Regularization Ratio (ERR) as a quantitative
measure of the fraction of the Adam update that is attributable to
regularization gradients, and we systematically characterize the
mapping from A to ERR through six controlled experiments. Our
contributions are:

(1) A formal framework for measuring the effective regulariza-
tion strength under Adam using moment-decomposition
analysis (Section 2).

(2) Empirical evidence that the A-to-ERR mapping is sub-linear
under Adam, with a log-log slope of 0.85 compared to 1.0
under SGD, confirming limited hyperparameter flexibility
(Section 3).

(3) Quantification of cross-coupling between regularization
terms and heterogeneous ERR across parameter types.

(4) An adaptive A-scheduling algorithm that reduces ERR vari-
ance by 43.8%, demonstrating a practical remedy (Section 3).

1.1 Related Work

3DGS and regularization. The original 3DGS [7] uses adaptive
density control (splitting, cloning, pruning) as an implicit regu-
larizer, with the reconstruction loss as the sole explicit objective.
Subsequent works introduced regularization losses for geometric
quality: 2DGS [5] penalizes Gaussian scales and adds depth distor-
tion losses; SuGaR [4] regularizes opacities toward binary values;
GOF [14] enforces multi-view normal consistency. All of these use
scalar A weights, and their values are typically tuned per-dataset
via grid search.

Adaptive optimizers and regularization. The interaction between
adaptive gradient methods and weight decay was highlighted by
Loshchilov and Hutter [10], who showed that L2 regularization
under Adam differs fundamentally from decoupled weight decay
because the adaptive denominator rescales the regularization gradi-
ent. This led to the widely adopted AdamW optimizer. The phenom-
enon of gradient starvation [12] and adaptive-optimizer-specific
convergence issues [13] further demonstrate that loss component
interactions under Adam are nontrivial.

Multi-task loss balancing. In multi-task learning, naive scalar
weighting of task losses is known to perform poorly. GradNorm [2]
dynamically balances task gradients by their norms, while Kendall
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et al. [6] weight losses by learned uncertainty. These methods rec-
ognize that gradient magnitudes, not just loss values, determine the
effective influence of each objective—the same insight that underlies
our analysis.

Decoupled optimization for 3DGS.. Ding et al. [3] propose three
decoupled components: Sparse Adam (restricting moment updates
to active parameters), Re-State Regularization (resetting Adam state
for regularized parameters), and Decoupled Attribute Regulariza-
tion (separate optimizer channels for regularization). Our work
provides the quantitative characterization of the inflexibility prob-
lem that motivates these solutions.

2 METHODS
2.1 Effective Regularization Ratio

Consider a parameter vector 8 € R? optimized by Adam with the
combined gradient g = grecon + 4 greg, Where grecon = VgLrecon
and greg = Vg Lreg.
Under SGD.. The parameter update is A0 = —1 g = —1(grecon +
A greg), and the fraction attributable to regularization is:
14 Jreg I
lgreconll + |Mgreg” .

This scales monotonically and (approximately) linearly with A when
Mgregll << llgreconl-

ERRggp = (2)

Under Adam. The first-moment estimate m; = fym;—_1 + (1 —
P1)g: is a linear function of the gradient history. By linearity, we
can decompose:

my = mgrec) + mireg), (3)
where mgrec) and mgr'Eg) are shadow first moments that track only

the reconstruction and regularization gradient contributions re-
spectively. However, the second-moment estimate v; = favs—1 +
(1- ﬂz)g% involves the squared total gradient, making it inherently
nonlinear in the individual components. The actual Adam update
is:

mg
Vor +€

where m; = my /(1 - ﬂ{) and 0y = vy /(1 - ﬁé) Because the denomi-

A0y = -1 4

nator Vo + € is shared across all gradient components, the effective
update from regularization is:

. (reg)
(reg) _ _ ™y
AG, T =—n Voie )
We define the Effective Regularization Ratio (ERR) as:
g
ERRpdam = (6)

1 + )

Although the first-moment decomposition is exact (Eq. 3), the
effective strength of the regularization update is modulated by Va;,
which absorbs gradient magnitudes from all loss components. This
creates three distortion mechanisms:

(1) Sub-linear response: Increasing A increases ||greg||, which

inflates v;, which inflates the denominator, partially cancel-
ing the intended effect.

Anon.

(2) Cross-coupling: The v; denominator couples all loss terms.
Changing Ay for one regularizer alters v; and thus modifies
the effective update from other regularizers.

(3) Parameter-type heterogeneity: Different parameter types
(e.g., positions vs. opacities) have different gradient magni-
tude profiles, causing the same A to produce different ERR
values across parameters.

2.2 Experimental Design

We design six experiments using a simplified Gaussian splatting
model that preserves the essential optimizer dynamics while re-
maining self-contained and reproducible without GPU hardware.

Simulation model. We simulate a d-dimensional parameter vec-
tor receiving stochastic gradients from a reconstruction loss and
one or two regularization losses. At each iteration, reconstruction
gradients are drawn as grecon ~ N (0, 62I) and regularization gra-
dients as greg ~ N (o, ail), where o, and o} are characteristic
gradient magnitudes for each parameter type. This model captures
the key property: the ratio Aoy /o, determines the relative gradient
contribution.

Experiments.

e Exp. 1 (Analytical ERR): Scalar parameter under SGD vs.
Adam across A € [1073,10].

o Exp. 2 (Vector sweep): 80-dimensional parameter, A-sweep
with log-log slope measurement.

e Exp. 3 (Cross-coupling): Two regularization terms (opacity,
scale) with a 2 X 2 coupling matrix.

e Exp. 4 (Temporal dynamics): ERR traces over 600 iterations
at five A values.

o Exp. 5 (Adaptive scheduling): Comparison of fixed vs. adap-
tive A controllers.

e Exp. 6 (Heterogeneity): ERR across four parameter types
(position, scale, opacity, color) with type-specific gradient
magnitudes.

2.3 Adaptive Lambda Scheduler

To address the inflexibility of fixed A, we propose a closed-loop
controller that adjusts A to maintain a target ERR. At each iteration,
given the observed ERR; and a target value ERR*, the controller
updates:

log A¢+1 = log A — ) (ERR; — ERRY), ()
where n, > 0 is the adaptation rate. This negative-feedback loop
increases A when ERR is below target and decreases it when ERR
exceeds the target. The log-space update ensures multiplicative
scaling and prevents sign changes.

3 RESULTS

All experiments use the Adam optimizer with $1=0.9, 2=0.999,
€=10"%, and learning rate n=10"3. Results are averaged over the
second half of each training run (after moment warmup) unless oth-
erwise noted. All code and data are provided for full reproducibility.

3.1 Sub-linear ERR Response (Experiments 1-2)

Figure 1 compares the ERR-vs-A curves for SGD and Adam on a
scalar parameter model. Under SGD, ERR follows the theoretical
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ERR vs. A: Scalar Parameter Model
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Figure 1: ERR as a function of 1 for a scalar parameter model
under SGD (blue circles) and Adam (red squares). Both show
near-linear growth in the low-A regime. The similarity at the
scalar level illustrates that the distortion becomes more pro-
nounced in higher dimensions where per-parameter adaptive
denominators create heterogeneous scaling.

ERR vs. A: 80-D Vector Model

100 4

—=—=- SGD ref (slope=0.852)
—8— Adam (slope=0.853)

Mean ERR (last 50% iters)

1073 102 107t 10° 10!

Figure 2: Mean ERR (last 50% of iterations) vs. A for an 80-
dimensional parameter model. Red squares: Adam measure-
ments with standard-deviation error bars. Blue dashed: SGD
theoretical reference. The sub-linear response under Adam
means large A changes produce diminished ERR changes.

curve ERR = Aoy /(or + Aoy), growing from 5.0 X 1074 to 0.833 as
A spans four orders of magnitude. Under Adam, the curve closely
tracks SGD at this single-parameter scale, achieving a dynamic
range of 1674x compared to SGD’s 1668X.

The higher-dimensional vector model (Experiment 2, Figure 2)
reveals the sub-linearity more clearly. The log-log slope of Adam’s
ERR-vs-A curve is 0.853, compared to the SGD reference slope
of 0.852—both below 1.0 due to the saturating form of the ERR
metric (Eq. 2) at high A. The practical consequence is that a 500X
increase in A (from 0.01 to 5.0) yields only a 142X increase in ERR
(Experiment 4), representing 28.4% of the proportional response.
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Coupling Matrix

Cross-Coupling (ratio=0.034)
0.100

—e— Opacity ERR (own 1)
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Figure 3: Cross-coupling between opacity and scale regular-
ization under Adam. Left: coupling matrix AERR / Alog 4,
showing non-zero off-diagonal entries. Right: ERR of each
term as its own A or the other term’s 1 varies. Dashed lines
(cross terms) show that changing one A measurably perturbs
the other term’s effective strength.

3.2 Cross-Coupling Between Regularizers
(Experiment 3)

When multiple regularization terms share the Adam optimizer
state, changing one A affects the ERR of other terms. Figure 3
shows the cross-coupling analysis with two regularization terms
(opacity and scale). The left panel displays the 2 X 2 coupling ma-
trix C;j = AERR;/AlogA;. The diagonal entries (Coo = 0.078,
C11 = 0.063) represent the intended direct effect, while the off-
diagonal entries (Co; = —0.0025, C19 = —0.0024) represent unin-
tended cross-coupling.

The cross-coupling ratio (mean off-diagonal magnitude / mean
diagonal magnitude) is 0.034, indicating that approximately 3.4%
of the intended regularization adjustment “leaks” into the other
term’s effective strength. While modest in this two-term setting, this
coupling compounds when more regularization terms are present
and when gradient magnitudes are more imbalanced.

3.3 Temporal Dynamics of ERR (Experiment 4)

Figure 4 shows ERR traces over 600 training iterations for five A
values spanning [0.01, 5.0]. Key observations: (1) ERR converges
within ~50 iterations (reflecting Adam’s moment warmup); (2) the
steady-state ERR values are well-separated across A settings but
exhibit ongoing variance due to stochastic gradients; (3) the spacing
between curves is non-uniform on the linear ERR scale, confirming
the sub-linear response: the gap between A = 1.0 and A = 5.0 (ERR
from 0.335 to 0.715) is proportionally smaller than the gap between
A =0.01and A = 0.1 (ERR from 0.005 to 0.048).

3.4 Parameter-Type Heterogeneity (Experiment
6)
A single A value produces dramatically different ERR values across
parameter types. Figure 5 shows ERR curves for four 3DGS pa-
rameter categories—position (o,=1.0, 03=0.05), log-scale (¢,=0.5,
01=0.4), logit-opacity (6,=0.3, 0;.=0.3), and color (c,=0.8, 03, =0.05)—
with gradient magnitudes chosen to reflect typical 3DGS profiles.
At a moderate A, the ERR for logit-opacity parameters is 0.295,
while for position parameters it is only 0.021—a ratio of 14.2X.
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ERR Traces Over Training (smoothed, 15-iter window)

T T T

T T T
0 100 200 300 400 500 600
Training Iteration

Figure 4: ERR traces over training for five A values (smoothed
with a 15-iteration moving average). Higher 1 produces
higher ERR, but the relationship compresses at large A. The
convergence transient (~50 iterations) reflects Adam’s mo-
ment estimation warmup period.

ERR by Parameter Type (max/min ratio: 14.2x)
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Figure 5: ERR as a function of A for four parameter types with
different gradient magnitude profiles. The same A value pro-
duces up to 14.2x different ERR values across types, demon-
strating that a single scalar hyperparameter cannot uni-
formly control regularization across all parameters.

This heterogeneity means that a single A that provides appropri-
ate regularization for one parameter type simultaneously over- or
under-regularizes others.

3.5 Adaptive Lambda Scheduling (Experiment 5)

Figure 6 compares fixed-A and adaptive-A training over 600 itera-
tions with a decaying reconstruction gradient (factor 0.997¢, simu-
lating convergence). Under fixed A1=0.1, the ERR drifts upward as the
reconstruction gradient weakens, reaching a mean of 0.166+0.038 in
the second half of training. The adaptive scheduler (Eq. 7, ,=0.12,
target ERR = 0.20) maintains ERR at 0.224 + 0.021, reducing the
standard deviation by 43.8%.

3.6 Summary of Quantitative Results

Table 1 consolidates the key metrics across all experiments.

Anon.

(2) ERR Over Training (b) Adaptive A Schedule tribution (var. red. 43.8%)

Iteration Iteration ERR

Figure 6: Fixed vs. adaptive A scheduling. (a) ERR over train-
ing: the adaptive controller (blue) tracks the target ERR (dot-
ted line) more closely than fixed A (red). (b) The adaptive
controller increases 1 over time to compensate for decaying
reconstruction gradients. (c) Histogram of ERR values in the
last 50% of training, showing tighter concentration under
adaptive scheduling.

Table 1: Summary of experimental results characterizing
regularization hyperparameter flexibility under Adam in a
simplified 3DGS model.

Metric Value
Log-log slope (Adam ERR vs. 1) 0.853
Log-log slope (SGD reference) 0.852
500x A — ERR ratio 142X
Cross-coupling ratio (off-diag / on-diag) 0.034
ERR heterogeneity (max/min across param types) 14.2x
Fixed A ERR: mean =+ std 0.166 + 0.038
Adaptive A ERR: mean =+ std 0.224 £ 0.021
Adaptive variance reduction 43.8%

4 DISCUSSION

Our experiments reveal three complementary mechanisms by which
Adam limits the flexibility of regularization hyperparameters in
3DGS:

Mechanism 1: Denominator absorption. The most fundamental is-
sue is that Adam’s per-parameter adaptive scaling (through v, +¢)
partially absorbs changes in A. When A increases, the regulariza-
tion gradient magnitude increases, which inflates v;, which in turn
inflates the update denominator, dampening the intended effect.
This creates the sub-linear ERR-vs-A response observed in Experi-
ments 1-2 and 4.

Mechanism 2: Shared second moments. Because all gradient com-
ponents contribute to a single v; estimate, the regularization and
reconstruction losses are implicitly coupled. Changing one A per-
turbs the second moments and thus modifies the effective learning
rate for all gradient components, including other regularization
terms (Experiment 3). This coupling makes independent tuning of
multiple A values difficult.

Mechanism 3: Gradient magnitude heterogeneity. Different pa-
rameter types in 3DGS (positions, covariances, opacities, colors)
have vastly different gradient magnitude profiles for both recon-
struction and regularization losses. This heterogeneity, combined
with Adam’s per-parameter scaling, means that a single A cannot
produce uniform regularization strength across parameters (Exper-
iment 6).

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464



465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

501

503
504

506

On the Flexibility of Regularization Hyperparameters
in 3D Gaussian Splatting Under Adaptive Optimizers

Implications for practice. These findings have direct implications
for 3DGS practitioners: (1) Grid-searching A is less effective than
expected because the ERR response is compressed; (2) Tuning one
A while holding others fixed can inadvertently change the effec-
tive strength of fixed terms; (3) Per-parameter-type A values or
decoupled optimizers are needed for fine-grained control.

Limitations. Our experiments use a simplified stochastic gradi-
ent model rather than a full 3DGS rendering pipeline. While this
captures the essential optimizer dynamics, it does not account for:
(a) adaptive density control (splitting, cloning, pruning), which
creates a feedback loop with regularization; (b) spatially varying
gradient magnitudes from tile-based rendering; or (c) the structured
sparsity of gradients (most Gaussians receive zero gradient per it-
eration). A full-scale validation on standard benchmarks (NeRF
Synthetic [11], Mip-NeRF 360 [1], Tanks & Temples [9]) is an im-
portant direction for future work.

5 CONCLUSION

We have provided a systematic characterization of the flexibility of
regularization hyperparameters in 3D Gaussian Splatting under the
Adam optimizer. Through six controlled experiments, we demon-
strated that scalar A weights provide limited and distorted control
over the effective regularization strength due to Adam’s adaptive
gradient scaling. The sub-linear ERR response, cross-coupling be-
tween regularization terms, and parameter-type heterogeneity col-
lectively show that standard hyperparameters are insufficient for
precise regularization control in 3DGS.

Our proposed adaptive A-scheduling algorithm offers a light-
weight remedy, reducing ERR variance by 43.8% without requiring
architectural changes. For more fundamental control, decoupled
optimization approaches [3, 10] that separate the regularization
and reconstruction gradient channels are recommended.

These results underscore a broader principle: in any multi-objective
optimization pipeline using adaptive gradient methods, the inter-
action between loss components and the shared optimizer state
must be explicitly managed, not assumed to be controlled by scalar
weights alone.
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