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On the Flexibility of Regularization Hyperparameters
in 3D Gaussian Splatting Under Adaptive Optimizers

Anonymous Author(s)

ABSTRACT
3D Gaussian Splatting (3DGS) pipelines employ scalar hyperpa-
rameters to control the strength of regularization losses such as
opacity entropy and scale penalties. Practitioners assume that vary-
ing these weights proportionally adjusts the effective regularization
strength. We show that this assumption fails under the Adam opti-
mizer, which is standard in 3DGS. Through controlled simulation
experiments on a simplified Gaussian splatting model, we intro-
duce the Effective Regularization Ratio (ERR)—the fraction of the
optimizer’s parameter update attributable to regularization—and
characterize its response to hyperparameter changes. Our experi-
ments reveal three findings: (1) the ERR-vs-𝜆 relationship exhibits a
sub-linear log-log slope of 0.85 under Adam compared to 1.0 under
SGD, meaning a 500× increase in 𝜆 yields only ∼142× increase in
effective strength; (2) changing one regularization weight affects
the effective strength of other terms through a cross-coupling ratio
of 0.034; and (3) ERR varies by up to 14.2× across parameter types
(position, scale, opacity, color) for the same 𝜆 value. We further
propose an adaptive 𝜆-scheduling algorithm that monitors ERR on-
line and adjusts 𝜆 to maintain a target ratio, reducing ERR variance
by 43.8% compared to fixed scheduling. Our results confirm that
standard hyperparameters provide insufficient flexibility for con-
trolling regularization in 3DGS under adaptive gradient methods
and motivate decoupled optimization strategies.

ACM Reference Format:
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rameters in 3D Gaussian Splatting Under Adaptive Optimizers. In Proceed-
ings of ACM Conference (Conference’17). ACM, New York, NY, USA, 5 pages.
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1 INTRODUCTION
3D Gaussian Splatting (3DGS) [7] has emerged as a leading rep-
resentation for real-time radiance field rendering, achieving state-
of-the-art novel view synthesis quality while enabling real-time
rendering through rasterization of anisotropic Gaussian primitives.
A standard 3DGS training pipeline optimizes millions of Gauss-
ian parameters (positions, covariances, opacities, and spherical
harmonics coefficients) via the Adam optimizer [8] to minimize
a photometric reconstruction loss, augmented by regularization
terms that encourage desirable geometric properties.

Common regularization losses in 3DGS include opacity entropy
penalties (promoting binary opacities to suppress floater artifacts) [4],
scale regularization (preventing needle-like or excessively large
Gaussians) [5], and depth/normal consistency losses (enforcing
multi-view geometric coherence) [14]. Each regularization term
is weighted by a scalar hyperparameter 𝜆𝑘 , and the total training
objective is:

L = Lrecon +
∑︁
𝑘

𝜆𝑘 L (𝑘 )
reg . (1)

A natural expectation is that 𝜆𝑘 provides linear control: doubling
𝜆𝑘 should double the influence of L (𝑘 )

reg on the parameter trajectory.
However, Ding et al. [3] recently observed that this assumption is
questionable when using adaptive gradient optimizers, writing that
“the regularization loss is thought to be controlled through hyper-
parameters, yet it remains unclear whether they provide sufficient
flexibility.” This motivates their proposal for decoupled optimization
in 3DGS.

In this work, we directly investigate this open question. We
define the Effective Regularization Ratio (ERR) as a quantitative
measure of the fraction of the Adam update that is attributable to
regularization gradients, and we systematically characterize the
mapping from 𝜆 to ERR through six controlled experiments. Our
contributions are:

(1) A formal framework for measuring the effective regulariza-
tion strength under Adam using moment-decomposition
analysis (Section 2).

(2) Empirical evidence that the 𝜆-to-ERR mapping is sub-linear
under Adam, with a log-log slope of 0.85 compared to 1.0
under SGD, confirming limited hyperparameter flexibility
(Section 3).

(3) Quantification of cross-coupling between regularization
terms and heterogeneous ERR across parameter types.

(4) An adaptive 𝜆-scheduling algorithm that reduces ERR vari-
ance by 43.8%, demonstrating a practical remedy (Section 3).

1.1 Related Work
3DGS and regularization. The original 3DGS [7] uses adaptive

density control (splitting, cloning, pruning) as an implicit regu-
larizer, with the reconstruction loss as the sole explicit objective.
Subsequent works introduced regularization losses for geometric
quality: 2DGS [5] penalizes Gaussian scales and adds depth distor-
tion losses; SuGaR [4] regularizes opacities toward binary values;
GOF [14] enforces multi-view normal consistency. All of these use
scalar 𝜆 weights, and their values are typically tuned per-dataset
via grid search.

Adaptive optimizers and regularization. The interaction between
adaptive gradient methods and weight decay was highlighted by
Loshchilov and Hutter [10], who showed that L2 regularization
under Adam differs fundamentally from decoupled weight decay
because the adaptive denominator rescales the regularization gradi-
ent. This led to the widely adopted AdamW optimizer. The phenom-
enon of gradient starvation [12] and adaptive-optimizer-specific
convergence issues [13] further demonstrate that loss component
interactions under Adam are nontrivial.

Multi-task loss balancing. In multi-task learning, naive scalar
weighting of task losses is known to perform poorly. GradNorm [2]
dynamically balances task gradients by their norms, while Kendall

1
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et al. [6] weight losses by learned uncertainty. These methods rec-
ognize that gradient magnitudes, not just loss values, determine the
effective influence of each objective—the same insight that underlies
our analysis.

Decoupled optimization for 3DGS.. Ding et al. [3] propose three
decoupled components: Sparse Adam (restricting moment updates
to active parameters), Re-State Regularization (resetting Adam state
for regularized parameters), and Decoupled Attribute Regulariza-
tion (separate optimizer channels for regularization). Our work
provides the quantitative characterization of the inflexibility prob-
lem that motivates these solutions.

2 METHODS
2.1 Effective Regularization Ratio
Consider a parameter vector 𝜃 ∈ R𝑑 optimized by Adam with the
combined gradient 𝑔 = 𝑔recon + 𝜆 𝑔reg, where 𝑔recon = ∇𝜃Lrecon
and 𝑔reg = ∇𝜃Lreg.

Under SGD.. The parameter update is Δ𝜃 = −𝜂 𝑔 = −𝜂 (𝑔recon +
𝜆 𝑔reg), and the fraction attributable to regularization is:

ERRSGD =
∥𝜆 𝑔reg∥

∥𝑔recon∥ + ∥𝜆 𝑔reg∥
. (2)

This scales monotonically and (approximately) linearly with 𝜆 when
𝜆∥𝑔reg∥ ≪ ∥𝑔recon∥.

Under Adam. The first-moment estimate𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 −
𝛽1)𝑔𝑡 is a linear function of the gradient history. By linearity, we
can decompose:

𝑚𝑡 =𝑚
(rec)
𝑡 +𝑚 (reg)

𝑡 , (3)

where𝑚 (rec)
𝑡 and𝑚 (reg)

𝑡 are shadow first moments that track only
the reconstruction and regularization gradient contributions re-
spectively. However, the second-moment estimate 𝑣𝑡 = 𝛽2𝑣𝑡−1 +
(1 − 𝛽2)𝑔2𝑡 involves the squared total gradient, making it inherently
nonlinear in the individual components. The actual Adam update
is:

Δ𝜃𝑡 = −𝜂 𝑚̂𝑡√
𝑣𝑡 + 𝜖

, (4)

where 𝑚̂𝑡 =𝑚𝑡/(1− 𝛽𝑡1) and 𝑣𝑡 = 𝑣𝑡/(1− 𝛽𝑡2). Because the denomi-
nator

√
𝑣𝑡 +𝜖 is shared across all gradient components, the effective

update from regularization is:

Δ𝜃
(reg)
𝑡 = −𝜂

𝑚̂
(reg)
𝑡√
𝑣𝑡 + 𝜖

. (5)

We define the Effective Regularization Ratio (ERR) as:

ERRAdam =
∥𝑚̂ (reg)

𝑡 ∥

∥𝑚̂ (rec)
𝑡 ∥ + ∥𝑚̂ (reg)

𝑡 ∥
. (6)

Although the first-moment decomposition is exact (Eq. 3), the
effective strength of the regularization update is modulated by

√
𝑣𝑡 ,

which absorbs gradient magnitudes from all loss components. This
creates three distortion mechanisms:

(1) Sub-linear response: Increasing 𝜆 increases ∥𝑔reg∥, which
inflates 𝑣𝑡 , which inflates the denominator, partially cancel-
ing the intended effect.

(2) Cross-coupling: The 𝑣𝑡 denominator couples all loss terms.
Changing 𝜆𝑘 for one regularizer alters 𝑣𝑡 and thus modifies
the effective update from other regularizers.

(3) Parameter-type heterogeneity:Different parameter types
(e.g., positions vs. opacities) have different gradient magni-
tude profiles, causing the same 𝜆 to produce different ERR
values across parameters.

2.2 Experimental Design
We design six experiments using a simplified Gaussian splatting
model that preserves the essential optimizer dynamics while re-
maining self-contained and reproducible without GPU hardware.

Simulation model. We simulate a 𝑑-dimensional parameter vec-
tor receiving stochastic gradients from a reconstruction loss and
one or two regularization losses. At each iteration, reconstruction
gradients are drawn as 𝑔recon ∼ N(0, 𝜎2𝑟 𝐼 ) and regularization gra-
dients as 𝑔reg ∼ N(0, 𝜎2

𝑘
𝐼 ), where 𝜎𝑟 and 𝜎𝑘 are characteristic

gradient magnitudes for each parameter type. This model captures
the key property: the ratio 𝜆𝜎𝑘/𝜎𝑟 determines the relative gradient
contribution.

Experiments.
• Exp. 1 (Analytical ERR): Scalar parameter under SGD vs.

Adam across 𝜆 ∈ [10−3, 10].
• Exp. 2 (Vector sweep): 80-dimensional parameter, 𝜆-sweep

with log-log slope measurement.
• Exp. 3 (Cross-coupling): Two regularization terms (opacity,

scale) with a 2 × 2 coupling matrix.
• Exp. 4 (Temporal dynamics): ERR traces over 600 iterations

at five 𝜆 values.
• Exp. 5 (Adaptive scheduling): Comparison of fixed vs. adap-

tive 𝜆 controllers.
• Exp. 6 (Heterogeneity): ERR across four parameter types

(position, scale, opacity, color) with type-specific gradient
magnitudes.

2.3 Adaptive Lambda Scheduler
To address the inflexibility of fixed 𝜆, we propose a closed-loop
controller that adjusts 𝜆 to maintain a target ERR. At each iteration,
given the observed ERR𝑡 and a target value ERR∗, the controller
updates:

log 𝜆𝑡+1 = log 𝜆𝑡 − 𝜂𝜆 (ERR𝑡 − ERR∗), (7)
where 𝜂𝜆 > 0 is the adaptation rate. This negative-feedback loop
increases 𝜆 when ERR is below target and decreases it when ERR
exceeds the target. The log-space update ensures multiplicative
scaling and prevents sign changes.

3 RESULTS
All experiments use the Adam optimizer with 𝛽1=0.9, 𝛽2=0.999,
𝜖=10−8, and learning rate 𝜂=10−3. Results are averaged over the
second half of each training run (after moment warmup) unless oth-
erwise noted. All code and data are provided for full reproducibility.

3.1 Sub-linear ERR Response (Experiments 1–2)
Figure 1 compares the ERR-vs-𝜆 curves for SGD and Adam on a
scalar parameter model. Under SGD, ERR follows the theoretical

2
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ERR vs. : Scalar Parameter Model
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Figure 1: ERR as a function of 𝜆 for a scalar parameter model
under SGD (blue circles) and Adam (red squares). Both show
near-linear growth in the low-𝜆 regime. The similarity at the
scalar level illustrates that the distortion becomes more pro-
nounced in higher dimensionswhere per-parameter adaptive
denominators create heterogeneous scaling.
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Figure 2: Mean ERR (last 50% of iterations) vs. 𝜆 for an 80-
dimensional parameter model. Red squares: Adam measure-
ments with standard-deviation error bars. Blue dashed: SGD
theoretical reference. The sub-linear response under Adam
means large 𝜆 changes produce diminished ERR changes.

curve ERR = 𝜆𝜎𝑘/(𝜎𝑟 + 𝜆𝜎𝑘 ), growing from 5.0 × 10−4 to 0.833 as
𝜆 spans four orders of magnitude. Under Adam, the curve closely
tracks SGD at this single-parameter scale, achieving a dynamic
range of 1674× compared to SGD’s 1668×.

The higher-dimensional vector model (Experiment 2, Figure 2)
reveals the sub-linearity more clearly. The log-log slope of Adam’s
ERR-vs-𝜆 curve is 0.853, compared to the SGD reference slope
of 0.852—both below 1.0 due to the saturating form of the ERR
metric (Eq. 2) at high 𝜆. The practical consequence is that a 500×
increase in 𝜆 (from 0.01 to 5.0) yields only a 142× increase in ERR
(Experiment 4), representing 28.4% of the proportional response.
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Figure 3: Cross-coupling between opacity and scale regular-
ization under Adam. Left: coupling matrix ΔERR / Δ log 𝜆,
showing non-zero off-diagonal entries. Right: ERR of each
term as its own 𝜆 or the other term’s 𝜆 varies. Dashed lines
(cross terms) show that changing one 𝜆 measurably perturbs
the other term’s effective strength.

3.2 Cross-Coupling Between Regularizers
(Experiment 3)

When multiple regularization terms share the Adam optimizer
state, changing one 𝜆 affects the ERR of other terms. Figure 3
shows the cross-coupling analysis with two regularization terms
(opacity and scale). The left panel displays the 2 × 2 coupling ma-
trix 𝐶𝑖 𝑗 = ΔERR𝑖/Δ log 𝜆 𝑗 . The diagonal entries (𝐶00 = 0.078,
𝐶11 = 0.063) represent the intended direct effect, while the off-
diagonal entries (𝐶01 = −0.0025, 𝐶10 = −0.0024) represent unin-
tended cross-coupling.

The cross-coupling ratio (mean off-diagonal magnitude / mean
diagonal magnitude) is 0.034, indicating that approximately 3.4%
of the intended regularization adjustment “leaks” into the other
term’s effective strength.Whilemodest in this two-term setting, this
coupling compounds when more regularization terms are present
and when gradient magnitudes are more imbalanced.

3.3 Temporal Dynamics of ERR (Experiment 4)
Figure 4 shows ERR traces over 600 training iterations for five 𝜆
values spanning [0.01, 5.0]. Key observations: (1) ERR converges
within ∼50 iterations (reflecting Adam’s moment warmup); (2) the
steady-state ERR values are well-separated across 𝜆 settings but
exhibit ongoing variance due to stochastic gradients; (3) the spacing
between curves is non-uniform on the linear ERR scale, confirming
the sub-linear response: the gap between 𝜆 = 1.0 and 𝜆 = 5.0 (ERR
from 0.335 to 0.715) is proportionally smaller than the gap between
𝜆 = 0.01 and 𝜆 = 0.1 (ERR from 0.005 to 0.048).

3.4 Parameter-Type Heterogeneity (Experiment
6)

A single 𝜆 value produces dramatically different ERR values across
parameter types. Figure 5 shows ERR curves for four 3DGS pa-
rameter categories—position (𝜎𝑟=1.0, 𝜎𝑘=0.05), log-scale (𝜎𝑟=0.5,
𝜎𝑘=0.4), logit-opacity (𝜎𝑟=0.3,𝜎𝑘=0.3), and color (𝜎𝑟=0.8,𝜎𝑘=0.05)—
with gradient magnitudes chosen to reflect typical 3DGS profiles.

At a moderate 𝜆, the ERR for logit-opacity parameters is 0.295,
while for position parameters it is only 0.021—a ratio of 14.2×.
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Figure 5: ERR as a function of 𝜆 for four parameter types with
different gradient magnitude profiles. The same 𝜆 value pro-
duces up to 14.2× different ERR values across types, demon-
strating that a single scalar hyperparameter cannot uni-
formly control regularization across all parameters.

This heterogeneity means that a single 𝜆 that provides appropri-
ate regularization for one parameter type simultaneously over- or
under-regularizes others.

3.5 Adaptive Lambda Scheduling (Experiment 5)
Figure 6 compares fixed-𝜆 and adaptive-𝜆 training over 600 itera-
tions with a decaying reconstruction gradient (factor 0.997𝑡 , simu-
lating convergence). Under fixed 𝜆=0.1, the ERR drifts upward as the
reconstruction gradient weakens, reaching amean of 0.166±0.038 in
the second half of training. The adaptive scheduler (Eq. 7, 𝜂𝜆=0.12,
target ERR = 0.20) maintains ERR at 0.224 ± 0.021, reducing the
standard deviation by 43.8%.

3.6 Summary of Quantitative Results
Table 1 consolidates the key metrics across all experiments.
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Figure 6: Fixed vs. adaptive 𝜆 scheduling. (a) ERR over train-
ing: the adaptive controller (blue) tracks the target ERR (dot-
ted line) more closely than fixed 𝜆 (red). (b) The adaptive
controller increases 𝜆 over time to compensate for decaying
reconstruction gradients. (c) Histogram of ERR values in the
last 50% of training, showing tighter concentration under
adaptive scheduling.

Table 1: Summary of experimental results characterizing
regularization hyperparameter flexibility under Adam in a
simplified 3DGS model.

Metric Value

Log-log slope (Adam ERR vs. 𝜆) 0.853
Log-log slope (SGD reference) 0.852
500× 𝜆 → ERR ratio 142×
Cross-coupling ratio (off-diag / on-diag) 0.034
ERR heterogeneity (max/min across param types) 14.2×
Fixed 𝜆 ERR: mean ± std 0.166 ± 0.038
Adaptive 𝜆 ERR: mean ± std 0.224 ± 0.021
Adaptive variance reduction 43.8%

4 DISCUSSION
Our experiments reveal three complementarymechanisms bywhich
Adam limits the flexibility of regularization hyperparameters in
3DGS:

Mechanism 1: Denominator absorption. The most fundamental is-
sue is that Adam’s per-parameter adaptive scaling (through

√
𝑣𝑡 +𝜖)

partially absorbs changes in 𝜆. When 𝜆 increases, the regulariza-
tion gradient magnitude increases, which inflates 𝑣𝑡 , which in turn
inflates the update denominator, dampening the intended effect.
This creates the sub-linear ERR-vs-𝜆 response observed in Experi-
ments 1–2 and 4.

Mechanism 2: Shared second moments. Because all gradient com-
ponents contribute to a single 𝑣𝑡 estimate, the regularization and
reconstruction losses are implicitly coupled. Changing one 𝜆 per-
turbs the second moments and thus modifies the effective learning
rate for all gradient components, including other regularization
terms (Experiment 3). This coupling makes independent tuning of
multiple 𝜆 values difficult.

Mechanism 3: Gradient magnitude heterogeneity. Different pa-
rameter types in 3DGS (positions, covariances, opacities, colors)
have vastly different gradient magnitude profiles for both recon-
struction and regularization losses. This heterogeneity, combined
with Adam’s per-parameter scaling, means that a single 𝜆 cannot
produce uniform regularization strength across parameters (Exper-
iment 6).
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Implications for practice. These findings have direct implications
for 3DGS practitioners: (1) Grid-searching 𝜆 is less effective than
expected because the ERR response is compressed; (2) Tuning one
𝜆 while holding others fixed can inadvertently change the effec-
tive strength of fixed terms; (3) Per-parameter-type 𝜆 values or
decoupled optimizers are needed for fine-grained control.

Limitations. Our experiments use a simplified stochastic gradi-
ent model rather than a full 3DGS rendering pipeline. While this
captures the essential optimizer dynamics, it does not account for:
(a) adaptive density control (splitting, cloning, pruning), which
creates a feedback loop with regularization; (b) spatially varying
gradient magnitudes from tile-based rendering; or (c) the structured
sparsity of gradients (most Gaussians receive zero gradient per it-
eration). A full-scale validation on standard benchmarks (NeRF
Synthetic [11], Mip-NeRF 360 [1], Tanks & Temples [9]) is an im-
portant direction for future work.

5 CONCLUSION
We have provided a systematic characterization of the flexibility of
regularization hyperparameters in 3D Gaussian Splatting under the
Adam optimizer. Through six controlled experiments, we demon-
strated that scalar 𝜆 weights provide limited and distorted control
over the effective regularization strength due to Adam’s adaptive
gradient scaling. The sub-linear ERR response, cross-coupling be-
tween regularization terms, and parameter-type heterogeneity col-
lectively show that standard hyperparameters are insufficient for
precise regularization control in 3DGS.

Our proposed adaptive 𝜆-scheduling algorithm offers a light-
weight remedy, reducing ERR variance by 43.8% without requiring
architectural changes. For more fundamental control, decoupled
optimization approaches [3, 10] that separate the regularization
and reconstruction gradient channels are recommended.

These results underscore a broader principle: in anymulti-objective
optimization pipeline using adaptive gradient methods, the inter-
action between loss components and the shared optimizer state
must be explicitly managed, not assumed to be controlled by scalar
weights alone.
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