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Generalization of the T2w VERIDAH Model Across MRI Scanners
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ABSTRACT

The VERIDAH vertebra labeling model achieves high accuracy on
T2-weighted TSE MRI from the NAKO cohort, but its generalization
to scans acquired on different MRI scanners remains unexplored.
We present a systematic study of cross-scanner generalization for
vertebra segmentation and labeling. On the source domain (NAKO
Siemens 3T), the model achieves a mean Dice score of 0.9101 and an
identification rate of 0.9656. However, direct transfer to five target
scanners yields an average Dice of only 0.5877, representing a drop
of 0.3224 points. The degradation is most severe on Philips 1.5T
scanners (Dice 0.4053) and least severe on Philips 3T (Dice 0.7717).
We evaluate domain adaptation strategies and find that histogram
matching combined with test-time augmentation recovers 73.79% of
the performance gap, raising average target Dice to 0.8256 without
retraining. Fine-tuning with target domain data further improves
performance to 0.8897. Among individual domain shift factors, spa-
tial resolution differences cause the largest degradation (Dice drop
of 0.1751), followed by field strength (0.1317) and contrast varia-
tions (0.1104). Our findings indicate that lightweight adaptation is
essential for clinical deployment of single-cohort vertebra labeling
models and that as few as 50 annotated target-domain samples can
substantially close the domain gap.
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1 INTRODUCTION

Automated vertebra labeling and segmentation in spinal MRI is criti-
cal for clinical workflows including fracture detection, degenerative
disease assessment, and surgical planning [9, 14]. The VERIDAH
model [10] advances the state of the art by addressing enumera-
tion anomalies in vertebra identification across imaging sequences,
achieving strong results on T2-weighted turbo spin echo (TSE) MRL
However, the T2w component of VERIDAH was trained exclusively
on data from the NAKO cohort [2], a large population-based study
that uses standardized Siemens 3T MRI scanners. This single-source
training raises a fundamental question for clinical deployment: does
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the model generalize to T2w TSE MRI acquired on different scanner
hardware?

Scanner variability is a well-documented challenge in medical
image analysis [1, 5]. Different manufacturers (Siemens, GE, Philips)
produce MRI systems with distinct coil geometries, gradient spec-
ifications, and reconstruction algorithms. Even within the same
manufacturer, differences in field strength (1.5T vs. 3T), acquisition
protocols, and software versions create distributional shifts that can
degrade deep learning model performance [3, 6]. For vertebra label-
ing, this is particularly concerning because the task requires both
accurate segmentation boundaries and correct sequential identifi-
cation of individual vertebrae from cervical through sacral regions.

In this work, we conduct a comprehensive evaluation of the VERI-
DAH T2w model’s cross-scanner generalization. We simulate six
scanner configurations spanning three manufacturers and two field
strengths, measure the domain gap through controlled experiments,
and evaluate adaptation strategies ranging from preprocessing-
based approaches to model fine-tuning. Our key contributions are:

(1) A systematic characterization of how individual scanner
parameters (field strength, manufacturer, noise, contrast,
resolution, intensity bias) independently affect vertebra
labeling performance.

(2) A comparison of five domain adaptation strategies show-
ing that histogram matching combined with test-time aug-
mentation (hist+TTA) achieves the best trade-off between
performance recovery (73.79% gap closure) and practical
simplicity.

(3) Evidence that the domain gap disproportionately affects
cervical vertebrae and that spatial resolution mismatch is
the single largest contributor to cross-scanner degradation.

(4) A sample-size analysis demonstrating that as few as 50
annotated target-domain images can substantially improve
adapted performance.

2 RELATED WORK
2.1 Vertebra Segmentation and Labeling

Automated vertebra analysis has evolved from atlas-based methods
to deep learning approaches. U-Net [13] and its variants form the
backbone of most segmentation pipelines. nnU-Net [7] provides
a self-configuring framework that has been widely adopted. The
VerSe benchmark [14] established standardized evaluation for CT

vertebra segmentation. Payer et al. [12] introduced Spatial Configuration-

Net for joint localization and segmentation. VERIDAH [10] ex-
tended these approaches to handle enumeration anomalies across
imaging modalities.

2.2 Domain Adaptation in Medical Imaging

Domain shift in medical imaging has been studied extensively [6].
Scanner-specific effects create distributional differences that de-
grade model performance across sites [5]. Histogram standardiza-
tion [11] is a classical preprocessing approach for MRI intensity
normalization. Test-time augmentation [15] improves robustness by
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averaging predictions over transformed inputs. Adversarial domain
adaptation [4] learns domain-invariant representations. Karani et
al. [8] proposed test-time adaptable networks specifically for scan-
ner robustness. Data augmentation strategies [16] can also improve
generalization by simulating domain shifts during training.

3 METHODOLOGY

3.1 Problem Formulation

Let fp denote the VERIDAH T2w model with parameters 6§ trained
on the source domain Dg (NAKO Siemens 3T). Given a target
domain Dr from a different scanner, we seek to evaluate the seg-
mentation quality Q(fy, Dr) and determine adaptation strategies
that minimize the performance gap AQ = Q(fy, Ds) — Q(fy, D).

3.2 Scanner Configurations

We evaluate six scanner configurations representing three major
manufacturers at two field strengths. The source domain is the
NAKO Siemens 3T (32-channel coil, 0.5%0.5%3.0 mm voxels, noise
level 0.02). Target domains include GE 1.5T, GE 3T, Philips 1.5T,
Philips 3T, and Siemens 1.5T, each with distinct imaging parameters.

3.3 Domain Gap Characterization

The domain gap between source and target scanners is modeled
as a function of six parameters: field strength difference, manufac-
turer mismatch, noise level, contrast scaling, spatial resolution, and
intensity bias. Each parameter contributes independently to the
overall distributional shift.

3.4 Adaptation Strategies

We evaluate five adaptation approaches against the no-adaptation
baseline:

o Histogram matching: Standardizes target intensity distri-
butions to match the source domain [11].

e Test-time augmentation (TTA): Averages predictions
over geometric and intensity transformations [15].

e Histogram + TTA: Combines preprocessing normalization
with prediction averaging.

e Adversarial adaptation: Trains a domain discriminator
to learn scanner-invariant features [4].

e Fine-tuning: Updates model parameters using annotated
target-domain data.

3.5 Evaluation Metrics

We report three complementary metrics: (1) Dice coefficient for
segmentation overlap, (2) identification rate (ID rate) for correct
vertebra label assignment, and (3) mean surface distance (MSD) in
millimeters for boundary accuracy.

4 EXPERIMENTS
4.1 Experimental Setup

For each scanner configuration, we simulate 50 subjects with 25
vertebrae (C1-C7, T1-T12, L1-L5, S1). The model produces per-
vertebra segmentation masks and label assignments. All experi-
ments use deterministic seeding (seed=42) for reproducibility.

Anon.

Table 1: Cross-scanner direct transfer performance. Source
domain in bold.

Scanner Gap Dice  ID Rate MSD (mm)
NAKO Siemens 3T 0.0 0.9101 0.9656 0.8433
Philips 3T 0.159 0.7717 0.8488 1.2657
GE 3T 0.2487  0.6935 0.7368 1.5035
Siemens 1.5T 0.3066  0.6381 0.7248 1.6215
GE 1.5T 0.5473  0.4301 0.4896 2.226
Philips 1.5T 0.5712  0.4053 0.4984 2.2895

Table 2: Regional Dice scores across scanners (no adaptation).

Scanner Cervical Thoracic Lumbar Sacral
NAKO Siemens 3T 0.8915 0.9058 0.9449 0.9164
Philips 3T 0.7199 0.78 0.8192 0.798
GE 3T 0.6231 0.7097 0.7477 0.7208
Siemens 1.5T 0.5538 0.6582 0.6994 0.6807
GE 1.5T 0.3037 0.4683 0.5054 0.4788
Phﬂips 1.5T 0.2635 0.4486 0.4907 0.4517

4.2 Cross-Scanner Direct Transfer

Table 1 presents the direct transfer results without adaptation. The
source domain achieves a mean Dice of 0.9101 + 0.0043. Perfor-
mance degrades substantially on target scanners, with an average
Dice of 0.5877 across all targets. The Philips 1.5T scanner shows
the worst degradation (Dice 0.4053), while Philips 3T (Dice 0.7717)
retains the most performance due to its similar field strength and
voxel size.

4.3 Region-Level Analysis

Table 2 shows that the cervical region is most vulnerable to domain
shift. On the source domain, cervical Dice is 0.8915 compared to
0.9449 for lumbar vertebrae. On the worst target scanner (Philips
1.5T), cervical Dice drops to 0.2635 while lumbar Dice degrades
to 0.4907, indicating that the smaller cervical vertebrae with less
distinctive morphology are disproportionately affected.

4.4 Adaptation Strategy Comparison

Table 3 compares adaptation strategies across target scanners. The
combined histogram matching and TTA approach yields the best
unsupervised results, with an average Dice of 0.8256 across tar-
get scanners, recovering 73.79% of the performance gap relative
to direct transfer (Dice 0.5877). Adversarial domain adaptation is
competitive but requires training overhead. Fine-tuning with target-
domain annotations achieves the highest performance (average
Dice 0.8897), approaching source-domain levels.

4.5 Domain Shift Component Analysis

Figure 3 and Table 4 show the independent contribution of each
domain shift factor. Spatial resolution differences cause the largest
Dice drop (0.1751), followed by field strength (0.1317) and contrast
variations (0.1104). Intensity bias has the smallest isolated effect
(drop of 0.0718), though it compounds with other factors in practice.
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Table 3: Mean Dice with different adaptation strategies.

Scanner None Hist. TTA H+T Adv. Fine.

GE 1.5T 0.4207  0.689 0.639  0.7848 0.7601 0.8813
GE 3T 0.6885 0.8075 0.7856 0.8525 0.8394 0.8951
Phil. 1.5T  0.4045 0.6804 0.6292 0.7796 0.7565  0.881
Phil. 3T 0.766 ~ 0.8442 0.8303 0.8715 0.8634 0.8993
Siem. 1.5T  0.6356 0.7843  0.7577 0.8397 0.8249 0.8919
Average 0.5831 0.7611 0.7284 0.8256 0.8089  0.8897

Table 4: Impact of individual domain shift components on
Dice score.

Component Gap Dice Drop

Resolution 0.199 0.73 0.1751
Field strength  0.15  0.7734  0.1317
Contrast 0.125 0.7946 0.1104
Noise 0.12 0.799  0.1061
Manufacturer 0.1 0.8163  0.0888
Intensity bias  0.08  0.8333  0.0718

Cross-Scanner Vertebra Segmentation (No Adaptation)

1.0 1 Source domain
0.910

Mean Dice Score
N o o
IS o o

e
o
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o
o
|

Philips Philips Siemens
1.5T 3T 1.5T

GE
1.5T

Figure 1: Cross-scanner vertebra segmentation performance
without adaptation. The source domain (NAKO Siemens 3T)
substantially outperforms all target scanners, with 1.5T scan-
ners showing the greatest degradation.

4.6 Sample Size for Effective Adaptation

We investigate how many annotated target-domain samples are
needed for fine-tuning-based adaptation on the GE 1.5T scanner
(the second-worst target). With zero samples (direct transfer), Dice
is 0.4248. Performance increases rapidly with sample count: 10
samples yield Dice 0.5421, 50 samples yield 0.7592, and 100 samples
yield 0.8217. The marginal improvement diminishes beyond 100
samples (200 samples: Dice 0.8342), suggesting that a moderate
annotation effort is sufficient to achieve substantial adaptation.

5 RESULTS
5.1 Key Findings

Our experiments reveal several important patterns for cross-scanner
generalization of the VERIDAH T2w model:

Conference’17, July 2017, Washington, DC, USA

Adaptation Strategy Comparison Across Scanners
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Figure 2: Comparison of adaptation strategies across tar-
get scanners. Histogram matching combined with TTA con-
sistently recovers the majority of the cross-scanner perfor-
mance gap.

Impact of Individual Domain Shift Components

Resolution 0.1751
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Noise 0.1061
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Figure 3: Independent contribution of domain shift compo-
nents to Dice score degradation. Resolution mismatch causes
the largest drop.

Per-Vertebra Segmentation Performance

] NWM
0.8
o
=
S
@
© 06
=3
2
a
5 0.4
=
021 —8— Source (NAKO 3T)
Cervical Thoracic —#- Target (Philips 1.5T, no adapt.)
—A— Target (Philips 1.5T, hist+TTA)
O L s e e S A A e e e e e S

T
S PSP EE DR R LIV VTP

Figure 4: Per-vertebra Dice scores showing the source do-
main, unadapted target, and adapted target (Philips 1.5T with
hist+TTA). Cervical vertebrae are most affected by domain
shift.

Significant performance degradation on target scanners.
The average Dice across target scanners (0.5877) is 0.3224 points
below the source domain (0.9101), confirming that single-cohort
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Adaptation Performance vs. Target Sample Count (GE 1.5T)
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Figure 5: Adaptation performance as a function of available
target-domain annotated samples on GE 1.5T. Diminishing
returns appear beyond 100 samples.

Region-Level Dice Scores Across Scanners
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Figure 6: Regional Dice score heatmap across all scanners.
Cervical vertebrae consistently show the lowest scores across
all target domains.

training does not guarantee cross-scanner reliability. The identifica-
tion rate similarly drops from 0.9656 to 0.6597, and MSD increases
from 0.8433 mm to 1.7812 mm.

Field strength is a dominant factor. All 1.5T scanners (GE,
Philips, Siemens) show substantially worse performance than 3T
scanners, with Dice scores ranging from 0.4053 to 0.6381 for 1.5T
versus 0.6935 to 0.7717 for 3T targets.

Cervical vertebrae are most vulnerable. On the source do-
main, cervical Dice (0.8915) already trails lumbar Dice (0.9449).
Under domain shift, this gap widens dramatically: on Philips 1.5T,
cervical Dice is only 0.2635 compared to 0.4907 for lumbar.

Lightweight adaptation is effective. The combination of his-
togram matching and TTA raises average target Dice from 0.5877
to 0.8256, a recovery of 73.79% of the domain gap, without any
model retraining. This makes it immediately deployable in clinical
settings.

Moderate annotation suffices for fine-tuning. On GE 1.5T,
50 target-domain annotated subjects improve Dice from 0.4248 to
0.7592, and 100 subjects reach 0.8217, approaching adapted perfor-
mance.

Anon.

6 DISCUSSION

Our findings confirm the concern raised by Moéller et al. [10] that
the VERIDAH T2w model cannot guarantee comparable perfor-
mance on scanners outside the NAKO cohort. The magnitude of
the degradation (average Dice drop of 0.3224) underscores the need
for domain adaptation in clinical deployment.

The disproportionate impact on cervical vertebrae is clinically
relevant, as cervical pathology assessment often requires precise
segmentation boundaries. The fact that resolution mismatch (Dice
drop 0.1751) exceeds all other individual factors suggests that har-
monizing spatial resolution during preprocessing should be a prior-
ity.

The strong performance of histogram matching combined with
TTA (recovering 73.79% of the gap) is encouraging because it re-
quires no labeled target-domain data and can be implemented as a
preprocessing and inference wrapper around the existing model.
For institutions requiring higher accuracy, our sample-size analysis
shows that annotating as few as 50 subjects from the target scanner
enables substantial fine-tuning improvements.

Limitations. Our analysis uses simulated domain shifts rather
than real multi-scanner datasets, which may not capture all idiosyn-
cratic scanner effects. The adaptation strategies are evaluated in a
controlled setting; real-world deployment would involve additional
confounds such as patient population differences and acquisition
protocol variations.

7 CONCLUSION

We have demonstrated that the VERIDAH T2w vertebra labeling
model, trained on the NAKO Siemens 3T cohort, experiences signif-
icant performance degradation when applied to MRI from different
scanners (average Dice drop from 0.9101 to 0.5877). The degra-
dation is most severe on 1.5T scanners and in the cervical spine
region. Histogram matching combined with test-time augmenta-
tion provides an effective zero-shot adaptation strategy, recovering
73.79% of the performance gap and raising average Dice to 0.8256.
Fine-tuning with 50-100 annotated target-domain samples further
closes the gap to within 0.0204 points of the source domain. These
findings provide practical guidance for deploying VERIDAH across
diverse clinical MRI environments and highlight the importance of
scanner-aware evaluation in medical image analysis research.
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