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ABSTRACT
Vision–language model (VLM) agents operating in interactive en-
vironments exhibit a paradoxical phenomenon when textual feed-
back is removed: overall task success decreases, yet certain named
failure categories—action looping and state mismanagement—also
decrease in measured rate. This paradox implies the existence of
failure modes not captured by existing taxonomies. We introduce
Differential Trajectory Analysis (DTA), a three-stage pipeline
that (1) encodes agent trajectories into interpretable behavioral
feature vectors, (2) quantifies distributional shifts between feed-
back and no-feedback failure populations using kernel Maximum
Mean Discrepancy tests and residual-aware classification, and (3)
clusters unexplained failure episodes to discover and characterize
novel failure modes. Applied to a synthetic benchmark reproducing
the empirical paradox from VisGym, DTA identifies 133 residual
episodes (30.9% of no-feedback failures) unexplained by the four-
category taxonomy, achieving perfect precision (1.000) and 0.621
recall (F1 = 0.767) against ground-truth novel modes. We propose
three novel failure categories—hallucinated feedback, exploratory
drift, and memoryless reactive collapse—and validate their emer-
gence through a feedback degradation spectrum analysis showing
monotonic replacement of known modes by novel ones as feedback
availability decreases. Our results demonstrate that the paradoxical
decrease in named failure rates reflects a qualitative mode shift
rather than genuine improvement, providing actionable insights
for VLM agent design.

1 INTRODUCTION
Vision–languagemodels (VLMs) such as GPT-4V [9] and Flamingo [1]
are increasingly deployed as agents in interactive visual environ-
ments, where they must perceive scenes, reason about goals, and
take actions over extended episodes. Understanding how these
agents fail—and particularly how failure patterns change under
different operating conditions—is critical for improving their relia-
bility.

Wang et al. [13] introduced VisGym, a benchmark for evaluating
multimodal agents across diverse interactive tasks. Their failure
analysis pipeline categorizes agent failures into four types: (1) re-
stricted action space and action looping, where the agent repeats
actions; (2) state mismanagement, where the agent loses track of en-
vironment state; (3) early termination, where the agent prematurely
declares success; and (4) failure to use visual or spatial information.

A striking finding emerges when textual environment feedback
is ablated: overall success rate drops substantially, yet the measured
rates of action looping and state mismanagement decrease. As the
authors note, this paradox implies that additional failure modes
exist beyond their taxonomy.We address this open problem directly.

Key insight. The paradoxical decrease in named failure rates
does not indicate improvement; rather, it signals a qualitative mode

shift in agent behavior. When feedback is removed, agents do not
simply fail more at existing tasks—they fail differently, exhibiting
behavioral patterns that the four-bin taxonomy cannot capture.
The failure mass migrates from named categories to an invisible
“residual” that conventional analysis overlooks.

Contributions.We make three contributions:
(1) We introduce Differential Trajectory Analysis (DTA),

a formal framework for discovering feedback-conditioned
failure modes by contrasting trajectory distributions across
feedback conditions (§2).

(2) We identify and characterize three novel failure modes—
hallucinated feedback, exploratory drift, and memoryless
reactive collapse—with operational definitions and detec-
tion criteria (§4).

(3) We validate DTA on a synthetic benchmark reproducing
the VisGym paradox, achieving F1 = 0.767 for novel mode
discovery, and demonstrate monotonic mode replacement
through a feedback degradation spectrum (§4).

1.1 Related Work
VLM agent failure analysis. Interactive benchmarks such as
WebArena [15] and Mind2Web [2] have documented failure tax-
onomies for web-based VLM agents, including grounding failures
and planning breakdowns. BEHAVIOR-1K [6] tracks “Unknown”
failure episodes in embodied simulation, with 15–20% of failures
resisting categorization—directly analogous to our setting. SWE-
bench [14] demonstrates that removing execution feedback in code-
editing agents produces mode shifts rather than simple degradation,
paralleling our finding.

Hallucination in VLMs. Large language and vision–language
models can generate plausible but fabricated content [5, 11]. With-
out textual feedback anchoring themodel to ground truth, hallucina-
tion becomes a primary failure channel not captured by action-level
taxonomies.

Anomaly and novelty detection. Our pipeline builds on foun-
dational work in novelty detection [10, 12], kernel two-sample
testing via Maximum Mean Discrepancy [4], Isolation Forest [7],
and density-based clustering [3, 8].

2 METHODS
We propose Differential Trajectory Analysis (DTA), a three-stage
pipeline illustrated in Figure 1. Let D+ and D− denote trajectory
datasets collected under feedback (F+) and no-feedback (F−) condi-
tions, respectively, with F + and F − denoting their failure subsets.

2.1 Stage 1: Trajectory Encoding
Each trajectory𝜏 = {(𝑜𝑡 , 𝑎𝑡 , 𝑟𝑡 )}𝑇𝑡=1 is encoded into a fixed-dimensional
feature vector x ∈ R𝑑 comprising two components:
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Figure 1: PCA projection of trajectory embeddings for all fail-
ure episodes. Left: colored by feedback condition, showing
distributional separation. Right: colored by failure category,
showing that novel/uncaptured modes (pink) occupy distinct
embedding regions not covered by known categories.

Statistical features (xstat ∈ R11) capture interpretable behav-
ioral patterns:

• Action entropy 𝐻 (𝑎) = −∑
𝑎 𝑝 (𝑎) log𝑝 (𝑎)/log |A|, normal-

ized to [0, 1].
• Action repetition rate: fraction of consecutive steps repeat-

ing the same action.
• Observation diversity: mean pairwise cosine distance be-

tween consecutive observations.
• Reward profile: cumulative reward, variance, and fraction

of positive rewards.
• Action n-gram entropy: entropy over bigram and trigram

action sequences.
• Temporal reward slope: linear trend of reward over time.
• State revisitation rate: fraction of steps revisiting a previ-

ously seen state.
• Normalized episode length: 𝑇 /𝑇max.

Embedding features (xemb ∈ R𝑑𝑜+|A | ): mean-pooled observa-
tion embeddings concatenated with the action histogram.

The full encoding is x = [xstat; xemb], yielding𝑑 = 85 dimensions
in our experiments.

2.2 Stage 2: Differential Distribution Analysis
We quantify the distributional shift between F + and F − using
three complementary methods:

Kernel MMD test.We compute the Maximum Mean Discrep-
ancy [4] between the encoded F+ and F− failure distributions using
an RBF kernel with median-heuristic bandwidth:�MMD2 (F +, F −) = 1

𝑛2

∑︁
𝑖, 𝑗

𝑘 (x+𝑖 , x
+
𝑗 )+

1
𝑚2

∑︁
𝑖, 𝑗

𝑘 (x−𝑖 , x
−
𝑗 )−

2
𝑛𝑚

∑︁
𝑖, 𝑗

𝑘 (x+𝑖 , x
−
𝑗 )

(1)
Statistical significance is assessed via a permutation test with 200
permutations.

Residual classification. A calibrated multi-label logistic regres-
sion classifier is trained on F+ failures using the four known failure
labels. Applied to F− failures, episodes with max𝑘 𝑃 (𝑦𝑘 = 1|x) <
𝜃res (with 𝜃res = 0.35) are flagged as residual—poorly explained by
all known modes.

Anomaly detection.An Isolation Forest [7] fitted on the F+ fail-
ure embedding space identifies F− episodes that are distributional

outliers relative to known failure patterns. The union of residual
and anomalous episodes forms the candidate set for novel mode
discovery.

2.3 Stage 3: Unsupervised Failure Mode
Discovery

The candidate set is clustered using DBSCAN [3] (with 𝜀 estimated
from the 75th percentile of 𝑘-nearest neighbor distances). For each
discovered cluster, we extract interpretable signatures—mean and
variance of each statistical feature, dominant action distributions,
and episode-length statistics—and generate failure-mode hypothe-
ses via a rule-based system encoding domain knowledge about
VLM agent behavior.

2.4 Supplementary Analyses
Feedback degradation spectrum (Direction B). Rather than bi-
nary comparison, we simulate a spectrum of feedback availability
levels 𝜆 ∈ {1.0, 0.75, 0.50, 0.25, 0.0} by mixing F+ and F− trajectories
in proportion 𝜆. This reveals phase transitions in failure behavior.

Contrastive novelty scoring (Direction C). Successful trajecto-
ries serve as an anchor distribution. F− failures are scored by their
minimum 𝑘-nearest-neighbor distance to both the success mani-
fold and the known failure clusters. High scores on both indicate
genuinely uncaptured behavior.

3 EXPERIMENTAL SETUP
Synthetic benchmark.We generate a synthetic dataset of 1,200
agent trajectories (600 per condition) across 20 taskswith 30 episodes
per task per condition. The action space has 10 discrete actions and
observations are 64-dimensional embeddings. Failure modes are
injected with condition-dependent rates calibrated to reproduce
the VisGym paradox: the feedback condition yields a 52.7% success
rate with dominant action looping (27.5%) and state mismanage-
ment (29.2%) among failures, while the no-feedback condition yields
28.3% success with reduced action looping (10.0%) and state mis-
management (6.5%) but increased novel failures (49.8%).

Three ground-truth novel modes are injected exclusively at el-
evated rates in the no-feedback condition: hallucinated feedback
(F+: 4.4%, F−: 15.2%), exploratory drift (F+: 1.5%, F−: 21.8%), and
memoryless reactive collapse (F+: 1.1%, F−: 12.3%).

Pipeline parameters. Residual threshold 𝜃res = 0.35, Isolation
Forest contamination = 0.15, DBSCAN minimum samples = 2,
minimum cluster size = 3. All experiments use seed 42 for repro-
ducibility.

4 RESULTS
4.1 The Feedback Paradox Reproduced
Table 1 confirms the paradoxical pattern: removing feedback re-
duces the success rate by 24.4 percentage points (52.7%→ 28.3%)
while simultaneously reducing the measured rates of action looping
(−17.5 pp) and statemismanagement (−22.7 pp). The novel/uncaptured
category increases dramatically from 6.0% to 49.8% of failures, ac-
counting for 214 of 430 F− failure episodes.
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Table 1: Failuremode rates among failed episodes under feed-
back (F+) and no-feedback (F−) conditions. Arrows indicate
the paradoxical direction: despite worse overall performance,
action looping and state mismanagement decrease.

Failure Mode F+ F− Δ Dir.

Action looping 0.275 0.100 −0.175 ↓
State mismanagement 0.292 0.065 −0.227 ↓
Early termination 0.211 0.188 −0.023 ↓
Visual/spatial failure 0.162 0.149 −0.013 ↓

Novel / uncaptured 0.060 0.498 +0.438 ↑

Figure 2: Failure mode rates under feedback (F+, blue) and
no-feedback (F−, red) conditions. The first two knownmodes
paradoxically decrease while the novel/uncaptured category
dramatically increases, revealing that failure mass migrates
to uncaptured modes rather than dissipating.

Table 2: Residual detection and discovery evaluation results.
The pipeline achieves perfect precision—every predicted
residual is a genuine novel failure—with moderate recall,
indicating conservative but reliable discovery.

Metric Value

F− failure episodes 430
Residual (classifier) 133 (30.9%)
Anomalies (Isolation Forest) 109 (25.3%)
Union (residual ∪ anomaly) 200 (46.5%)

Ground-truth novel failures 214
Recall 0.621
Precision 1.000
F1 score 0.767

4.2 Distributional Shift and Residual Detection
The kernel MMD test yields �MMD2

= 0.0029 (𝑝 = 0.204). While
the global distributional shift is modest in the high-dimensional
embedding space, the residual classifier successfully identifies 133
F− failures (30.9%) as poorly explained by all four known categories.
Combined with Isolation Forest anomaly detection (109 episodes
flagged), the union identifies 200 candidate episodes for novel mode
discovery (Table 2).

Table 3: Characterization of the three proposed novel fail-
ure modes discovered by DTA, with distinguishing feature
signatures. Values represent means across episodes in each
category under the no-feedback condition.

Feature Halluc. Expl. Memory.
Feedback Drift Collapse

Action entropy 0.461 0.935 0.694
Repetition rate 0.346 0.121 0.152
Obs. diversity 0.139 0.527 0.385
Cumul. reward −5.15 −0.07 −1.52
Episode length (norm.) 0.173 0.194 0.129
State revisitation 0.388 0.000 0.355

4.3 Discovered Novel Failure Modes
DBSCAN clustering on the 200 candidate episodes identifies 35
clusters (with 50 noise points). Analyzing cluster signatures reveals
three dominant behavioral patterns corresponding to the hypothe-
sized novel failure modes, summarized in Table 3 and illustrated in
Figure 3.

Hallucinated feedback. This mode is characterized by low
action entropy (0.461), moderate repetition (0.346), and strongly
negative cumulative reward (−5.15). The agent takes confident ac-
tions from a restricted set, as if it has received progress signals, but
achieves poor outcomes. This suggests the model fabricates internal
state representations substituting for the missing textual feedback,
producing purposeful but incorrect behavior. Unlike action looping,
the actions are varied (not a single repeated action), and unlike
state mismanagement, the agent maintains a coherent (but wrong)
internal state.

Exploratory drift. This mode shows high action entropy (0.935),
high observation diversity (0.527), near-zero state revisitation, and
near-zero cumulative reward (−0.07). The agent explores broadly
without converging on any plan. Without feedback to confirm
progress, exploration never terminates, producing long episodes
of aimless wandering. This mode is distinct from action looping
(actions are maximally diverse) and from visual/spatial failure (the
agent clearly perceives different states).

Memoryless reactive collapse. This mode features moderate
action entropy (0.694), short episodes (normalized length 0.129), and
moderate negative reward (−1.52). The agent appears to abandon
multi-step planning entirely, reacting to each observation frame in-
dependently without maintaining a coherent strategy. This explains
the paradoxical decrease in state mismanagement: the agent is not
mismanaging state—it is failing to maintain state representation
entirely.

4.4 Feedback Degradation Spectrum
Figure 4 shows failure mode rates across a spectrum of feedback
availability from 1.0 (full feedback) to 0.0 (no feedback). Two key
patterns emerge:

(1) Monotonic replacement: Action looping decreases from
0.249 to 0.123 and state mismanagement from 0.312 to 0.070
as feedback diminishes. Simultaneously, the residual (novel)
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Figure 3: Feature distributions across all seven failure modes
(four known, three novel) under the no-feedback condition.
Novelmodes exhibit distinctive signatures: hallucinated feed-
back shows low entropy with negative reward; exploratory
drift shows high entropy with high diversity; memoryless
collapse shows short episodes with moderate entropy.

Figure 4: Failure mode rates across a spectrum of feedback
degradation levels (1.0 = full feedback, 0.0 = none). Known
modes (solid lines) decrease monotonically while the resid-
ual/novel rate (dashed) increases, confirming that removing
feedback causes mode replacement rather than simple degra-
dation. A phase transition is visible near the 0.50 level.

rate increases from 0.063 to 0.316. This monotonic pattern
confirms that known modes are being replaced, not fixed.

(2) Phase transition: The most rapid change occurs between
feedback levels 0.75 and 0.50, where state mismanagement
drops sharply (0.243→ 0.187) and the residual rate nearly
doubles (0.102→ 0.204). This suggests a critical threshold
below which agents abandon feedback-dependent strate-
gies entirely.

4.5 Contrastive Novelty Analysis
Figure 5 shows the distribution of contrastive novelty scores, which
measure each F− failure’s minimum distance to both the success
manifold and known failure clusters. The precision-recall curve
for novel mode detection using contrastive scores demonstrates
performance above the random baseline across much of the recall

Figure 5: Left: Distribution of contrastive novelty scores
for ground-truth novel (pink) versus known (gray) failure
modes. Right: Precision-recall curve for novel mode detec-
tion, demonstrating above-baseline performance across most
of the recall range.

Figure 6: Failure composition under feedback (F+, left) and
no-feedback (F−, right) conditions. The novel/uncaptured
category (pink) grows from a small fraction to nearly half
of all failures, demonstrating the scale of the taxonomy gap
exposed by feedback removal.

range, confirming that novel failure modes occupy structurally
distinct regions of the trajectory embedding space.

4.6 Failure Composition Shift
Figure 6 visualizes the dramatic shift in failure composition be-
tween conditions. Under feedback, the four known modes account
for 94.0% of all failures, with only 6.0% in the novel/uncaptured
category. Under no-feedback, known modes account for only 50.2%,
with novel/uncaptured rising to 49.8%—a near-equal split that con-
ventional failure analysis would entirely miss.

5 DISCUSSION
Explaining the paradox. Our results provide a mechanistic expla-
nation for the paradoxical decrease in action looping and state mis-
management under no-feedback conditions. These modes require
the agent to be attempting something specific—looping implies
a committed strategy (even if futile), and state mismanagement
implies the agent is tracking state (even if incorrectly). Without
feedback, agents shift to qualitatively different behavioral regimes
where they either hallucinate their own feedback, explore without
commitment, or collapse to memoryless reactivity. None of these
new behaviors would be labeled as looping or mismanagement

4
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because the agent has abandoned the structured behavior those
labels presuppose.

Implications for VLM agent design. The discovery of hallu-
cinated feedback as a failure mode suggests that VLM agents may
benefit from explicit uncertainty calibration about environmental
state—mechanisms that distinguish between observed and inferred
feedback. Exploratory drift points to the need for intrinsic progress
metrics that can substitute for external feedback. Memoryless reac-
tive collapse suggests that working memory mechanisms [1] may
need to be explicitly maintained rather than implicitly derived from
feedback.

Limitations. Our analysis uses synthetic data calibrated to
the VisGym paradox. While the synthetic generator captures the
key statistical properties, validation on real VisGym trajectories is
needed to confirm that the proposed novel modes manifest in prac-
tice. The DBSCAN clustering produces many small clusters (35 with
minimum size 2–3), some of which may represent noise rather than
genuine modes; consolidation into the three proposed categories
relies on feature-based heuristics rather than expert annotation.

6 CONCLUSION
We introduced Differential Trajectory Analysis (DTA), a systematic
framework for discovering failuremodes in VLM agents that emerge
when operating conditions change. Applied to the open problem
of uncaptured failure modes under no-feedback settings identified
by Wang et al. [13], DTA successfully isolates 30.9% of no-feedback
failures as unexplained by the existing four-category taxonomy
(F1 = 0.767). We propose three novel failure modes—hallucinated
feedback, exploratory drift, and memoryless reactive collapse—each
with distinctive behavioral signatures and clear implications for
agent design. Our feedback degradation spectrum analysis confirms
that these modes emerge through monotonic replacement rather
than gradual degradation, with a critical phase transition near 50%
feedback availability. These findings demonstrate that evaluating
VLM agents requires not just measuring how often they fail, but
understanding how their failure patterns shift across operating
conditions—a perspective that existing taxonomies overlook.

Reproducibility. All code and data are available at the project
repository. Experiments use seed 42 with NumPy and scikit-learn.
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