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Implicit Adam Updates Accelerate Dead Primitive Formation
in 3D Gaussian Splatting: A Simulation Study

Anonymous Author(s)
ABSTRACT
3D Gaussian Splatting (3DGS) optimizes a population of Gaussian
primitives using the Adam optimizer, where each training step ren-
ders from a single viewpoint and only visible primitives receive
nonzero gradients. Under standard Adam, invisible primitives still
receive implicit parameter updates because the optimizer’s first-
and second-moment estimates carry forward information from
prior steps. We investigate the conjecture that these implicit up-
dates accelerate the transition of primitives to dead states (opacity
below the pruning threshold), thereby inflating the count of dead
primitives relative to Sparse Adam, which skips updates for zero-
gradient parameters. Through analytical characterization and sto-
chastic lifecycle simulations of 2,000 primitives over 3,000 training
steps, we demonstrate that standard Adam produces 59.95% dead
primitives compared to 41.5% under Sparse Adam—a difference of
369 primitives (18.45 percentage points). The implicit drift decays
as (𝛽1/

√︁
𝛽2)𝑘 ≈ 0.9005𝑘 per invisible step with a half-life of 6.61

steps. We further identify a positive feedback loop: lower-opacity
primitives are less visible, accumulate more implicit drift (18.84 vs.
17.66 mean drift across quartiles), and die faster. Multi-seed experi-
ments confirm robustness with Adam producing 386.3 ± 37.1 more
dead primitives across 10 seeds (𝑝 < 0.001). Our findings provide
mechanistic evidence supporting the conjecture and inform the
design of optimizers for point-based neural rendering.

CCS CONCEPTS
• Computing methodologies → Computer vision; Machine
learning.

KEYWORDS
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1 INTRODUCTION
3D Gaussian Splatting (3DGS) [4] has emerged as a leading ap-
proach for real-time novel view synthesis, representing scenes as
collections of 3D Gaussian primitives optimized via gradient de-
scent. Each primitive carries parameters for position, covariance,
opacity, and color, and the scene is rendered by splatting these
Gaussians onto the image plane from a given camera viewpoint.

A critical aspect of 3DGS training is that each optimization step
renders only one viewpoint, producing nonzero gradients solely
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for primitives visible in that view. Under the standard Adam op-
timizer [5], however, all primitives receive parameter updates be-
cause Adam’s exponentially weighted moment estimates carry in-
formation from prior steps even when the current gradient is zero.
These implicit updates arise from the momentum decay of Adam’s
first and second moments.

Ding et al. [2] observed that standard Adam produces signifi-
cantly more dead primitives—Gaussians whose opacity falls below
a pruning threshold—compared to Sparse Adam, which restricts up-
dates to parameters with nonzero gradients. They conjectured that
implicit updates accelerate the death of primitives by continuing to
push opacity downward during invisible steps.

In this paper, we investigate this conjecture through a com-
bination of analytical characterization and large-scale stochastic
simulation. Our contributions are:

(1) We derive the decay rate of implicit updates as (𝛽1/
√︁
𝛽2)𝑘 ≈

0.9005𝑘 , showing a half-life of 6.61 steps.
(2) We simulate 2,000 Gaussian primitives under both Adam

and Sparse Adam across 3,000 training steps, demonstrating
that Adam produces 59.95% dead primitives versus 41.5%
for Sparse Adam.

(3) We identify a positive feedback loop linking opacity, visi-
bility, and implicit drift.

(4) We validate robustness across 10 random seeds, 8 gradient
bias levels, and 6 learning rates.

2 RELATEDWORK
3D Gaussian Splatting. 3DGS [4] achieves real-time rendering

by representing scenes as explicit 3D Gaussians optimized through
differentiable rasterization. The training procedure periodically
prunes dead primitives (those with opacity below a threshold) and
densifies the scene by splitting or cloning active primitives. Ding et
al. [2] proposed decoupling the optimization to avoid pathological
implicit updates, introducing Sparse Adam for 3DGS.

Adam Optimizer. Adam [5] maintains exponentially decaying
estimates of the first moment (mean) and second moment (variance)
of gradients. The bias-corrected update rule produces nonzero up-
dates even when the current gradient is zero, a property that is
benign in dense optimization but potentially harmful when gradi-
ents are structurally sparse, as in viewpoint-dependent rendering.
Recent work has characterized Adam’s implicit bias near minimizer
manifolds [1] and explored alternative optimizers with different
implicit biases [3].

Sparse Optimization. Sparse Adam [2] modifies Adam to skip
updates for parameters receiving zero gradients. This eliminates
implicit updates for invisible primitives, preserving their opacity
until they next contribute to a rendered view. The trade-off is that
Sparse Adam forgoes the regularizing effect of momentum decay,
which can be beneficial in some optimization landscapes.
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3 PROBLEM FORMULATION
3.1 3DGS Opacity Optimization
Each Gaussian primitive 𝑖 has an opacity parameter 𝛼𝑖 ∈ (0, 1)
parameterized in logit space as 𝛼𝑖 = 𝜎 (𝑟𝑖 ) where 𝜎 is the sigmoid
function and 𝑟𝑖 is the unconstrained raw parameter. At training
step 𝑡 , a viewpoint 𝑣𝑡 is sampled uniformly, and primitive 𝑖 is visible
with probability:

𝑝vis (𝑖, 𝑣𝑡 ) =
(
𝑝base +𝑤op · 𝛼𝑖

)
· 𝑎𝑖,𝑣𝑡 (1)

where 𝑝base = 0.25,𝑤op = 0.55, and 𝑎𝑖,𝑣𝑡 ∈ [0.2, 1.0] is a viewpoint-
dependent geometric affinity.

Visible primitives receive a stochastic gradient 𝑔 (𝑡 )
𝑖

∼ N(𝜇𝑔, 𝜎2𝑔 )
for the raw parameter 𝑟𝑖 , with 𝜇𝑔 = 0.005 encodingmild redundancy
pressure (positive gradient pushes 𝑟𝑖 downward under Adam’s
subtract rule, decreasing opacity). Invisible primitives receive𝑔 (𝑡 )

𝑖
=

0.

3.2 Adam vs. Sparse Adam Updates
Under standard Adam, the update at step 𝑡 is:

𝑚
(𝑡 )
𝑖

= 𝛽1𝑚
(𝑡−1)
𝑖

+ (1 − 𝛽1)𝑔 (𝑡 )𝑖
(2)

𝑣
(𝑡 )
𝑖

= 𝛽2𝑣
(𝑡−1)
𝑖

+ (1 − 𝛽2) (𝑔 (𝑡 )𝑖
)2 (3)

𝑟
(𝑡 )
𝑖

= 𝑟
(𝑡−1)
𝑖

− 𝜂 ·
𝑚̂

(𝑡 )
𝑖√︃

𝑣
(𝑡 )
𝑖

+ 𝜖
(4)

where 𝑚̂ = 𝑚/(1 − 𝛽𝑡1) and 𝑣 = 𝑣/(1 − 𝛽𝑡2) are bias-corrected
estimates, 𝜂 = 0.05 is the learning rate, 𝛽1 = 0.9, 𝛽2 = 0.999, and
𝜖 = 10−15.

When 𝑔 (𝑡 )
𝑖

= 0 (invisible step), the moments decay as𝑚 (𝑡 )
𝑖

=

𝛽1𝑚
(𝑡−1)
𝑖

and 𝑣 (𝑡 )
𝑖

= 𝛽2𝑣
(𝑡−1)
𝑖

, but the bias-corrected update𝑚̂/(
√
𝑣+

𝜖) remains nonzero—this is the implicit update.
Under Sparse Adam, no update is applied when 𝑔 (𝑡 )

𝑖
= 0: the

moments and parameter are frozen until the next visible step.

3.3 Dead Primitive Definition
A primitive is classified as dead when its opacity falls below the
pruning threshold 𝛼dead = 0.005.

4 ANALYTICAL CHARACTERIZATION
4.1 Implicit Drift Decay Rate
After a visible step at time 𝑡0 with gradient 𝑔last, consider 𝐾 con-
secutive invisible steps. The one-step moment contribution is𝑚0 =
(1 − 𝛽1)𝑔last and 𝑣0 = (1 − 𝛽2)𝑔2last. After 𝑘 invisible steps:

𝑚𝑘 = 𝛽𝑘1𝑚0, 𝑣𝑘 = 𝛽𝑘2 𝑣0 (5)

The ratio of the bias-corrected update magnitude at step 𝑘 rela-
tive to step 1 scales as:

|Δ𝑟𝑘 |
|Δ𝑟1 |

≈
(
𝛽1√︁
𝛽2

)𝑘−1
(6)

Table 1: Cumulative implicit drift 𝐷 (𝐾) for varying gradient
magnitude 𝑔 and invisible run length 𝐾 .

𝑔 𝐾 = 5 𝐾 = 10 𝐾 = 20 𝐾 = 50 𝐾 = 100
0.01 0.1824 0.2929 0.4000 0.4584 0.4613
0.03 0.1824 0.2929 0.4000 0.4584 0.4613
0.05 0.1824 0.2929 0.4000 0.4584 0.4613
0.10 0.1824 0.2929 0.4000 0.4584 0.4613

With 𝛽1 = 0.9 and 𝛽2 = 0.999, the decay ratio is 𝛽1/
√︁
𝛽2 = 0.9005.

The half-life is:

𝑘1/2 =
ln 0.5

ln(𝛽1/
√︁
𝛽2)

= 6.61 steps (7)

4.2 Cumulative Drift Bound
The cumulative implicit drift over 𝐾 invisible steps is:

𝐷 (𝐾) =
𝐾∑︁
𝑘=1

𝜂 · |𝑚̂𝑘 |√︁
𝑣𝑘 + 𝜖

(8)

Table 1 shows the cumulative drift for different gradient mag-
nitudes and invisible run lengths. For a representative gradient of
𝑔 = 0.05, the cumulative drift reaches 0.2929 after 10 invisible steps
and converges toward 0.4613 as 𝐾 → ∞.

5 EXPERIMENTAL SETUP
5.1 Simulation Framework
We simulate a population of 𝑁 = 2,000 Gaussian primitives over
𝑇 = 3,000 training steps with 𝑉 = 50 viewpoints. Each primitive’s
raw opacity parameter is initialized as 𝑟𝑖 ∼ N(−1.0, 0.82), corre-
sponding to initial opacities centered around 𝜎 (−1.0) ≈ 0.27. Per-
primitive viewpoint affinities are drawn uniformly from [0.2, 1.0]
and held fixed throughout training.

At each step, a viewpoint is sampled uniformly, visibility masks
are computed via Equation (1), gradients are drawn for visible
primitives, and Adam (or Sparse Adam) updates all (or only visible)
raw parameters.

5.2 Experiments
We conduct seven experiments:

(1) Main comparison: Adam vs. Sparse Adam under default
parameters.

(2) Analytical drift: Characterize per-step and cumulative
implicit drift.

(3) Gradient bias sweep: Vary redundancy pressure (𝜇𝑔 ∈
[0.005, 0.15]).

(4) Feedback loop analysis: Quartile-stratified drift and visi-
bility.

(5) Reactivation: Test recoverability of dead primitives.
(6) Multi-seed robustness: 10 random seeds.
(7) Learning rate sensitivity:𝜂 ∈ {0.01, 0.02, 0.05, 0.1, 0.15, 0.2}.
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Table 2: Main comparison of Adam vs. Sparse Adam after
3,000 training steps with 2,000 primitives.

Metric Adam Sparse Adam
Final dead count 1,199 830
Dead percentage 59.95% 41.5%
Peak dead count 1,202 830
Mean final opacity 0.0205 0.026
Median final opacity 0.0025 0.0073
Total implicit drift 36,382.81 0.0
Mean drift per primitive 18.19 0.0

Figure 1: Dead primitive accumulation over 3,000 training
steps. Standard Adam (red) consistently produces more dead
primitives than Sparse Adam (green).

6 RESULTS
6.1 Main Comparison
Table 2 presents the primary results. Standard Adam produces 1,199
dead primitives (59.95%) compared to 830 (41.5%) under Sparse
Adam, a difference of 369 primitives. Adam accumulates a total
implicit drift of 36,382.81 (mean 18.19 per primitive), while Sparse
Adam has zero implicit drift by construction.

Figure 1 shows the evolution of dead primitive counts over train-
ing. Adam’s dead count rises more steeply and plateaus at a higher
level than Sparse Adam, with the gap widening progressively.

6.2 Opacity Distribution
Figure 2 shows the final opacity distributions. Adam exhibits a
sharper concentration near zero, with the median opacity at 0.0025
versus 0.0073 for Sparse Adam.

6.3 Analytical Drift Characterization
The implicit update magnitude decays geometrically with a ratio
of 0.9005 per invisible step (Figure 3, left). The cumulative drift
converges rapidly: 63% of the total drift occurs within the first 10
invisible steps, and 87% within 20 steps (Figure 3, right).

Figure 2: Final opacity distributions. Adam shows a more
pronounced spike near zero, indicating stronger drift toward
the dead threshold.

Figure 3: Left: Per-step implicit drift decay on log scale for
different gradient magnitudes. Right: Cumulative drift vs.
consecutive invisible steps (𝑔 = 0.05).

Figure 4: Dead primitives under varying gradient bias. The
conjecture is supported at mild redundancy pressure where
Adam (red) exceeds Sparse Adam (green).

6.4 Gradient Bias Sweep
Figure 4 shows dead primitive counts under varying redundancy
pressure. The conjecture is supported at mild bias levels (𝜇𝑔 ≤ 0.01):
at 𝜇𝑔 = 0.005, Adam produces 369 more dead primitives than Sparse
Adam. At stronger biases (𝜇𝑔 ≥ 0.02), both optimizers drive all prim-
itives to death, and the difference vanishes. This indicates that im-
plicit updates are most consequential in the moderate-redundancy
regime where the explicit gradient alone is insufficient to kill all
primitives.
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Table 3: Opacity–visibility feedback analysis by final opacity
quartile (Adam).

Quartile Opacity Range Mean Drift Mean Visibility Dead
Q1 (lowest) [0.0, 0.0005) 18.84 493.06 500
Q2 [0.0005, 0.0025) 18.39 514.43 500
Q3 [0.0025, 0.014) 17.88 552.92 199
Q4 (highest) [0.014, 0.7877] 17.66 623.34 0

Figure 5: Left: Mean implicit drift by opacity quartile. Right:
Mean visibility count. Lower-opacity primitives accumulate
more drift and have less visibility, demonstrating the positive
feedback loop.

6.5 Opacity–Visibility Feedback Loop
Table 3 and Figure 5 reveal a positive feedback mechanism. Primi-
tives in the lowest opacity quartile (Q1) experience the highest mean
implicit drift (18.84) and lowest mean visibility count (493.06), while
the highest quartile (Q4) has drift of 17.66 and visibility of 623.34.
The feedback loop operates as: lower opacity → lower visibility
probability → longer invisible runs → more cumulative implicit
drift → further opacity decrease.

6.6 Multi-Seed Robustness
Figure 6 shows results across 10 random seeds. Adam consistently
produces more dead primitives than Sparse Adam, with a mean
difference of 386.3 ± 37.1 (all 10 seeds positive; 𝑝 < 0.001 by one-
sample 𝑡-test). The mean dead count is 1,201.4 ± 22.0 for Adam and
815.1 ± 19.4 for Sparse Adam.

6.7 Learning Rate Sensitivity
Figure 7 shows that the dead-primitive gap is largest at moderate
learning rates (𝜂 = 0.05: difference of 369) and diminishes at ex-
tremes. At 𝜂 = 0.01, neither optimizer produces dead primitives; at
𝜂 = 0.2, both produce near-total death (Adam: 1,918, Sparse Adam:
1,887, difference: 31).

6.8 Implicit Drift vs. Final Opacity
Figure 8 shows the per-primitive relationship between cumulative
implicit drift and final opacity under Adam. Dead primitives (left
of the dashed threshold) exhibit a wide range of drift values, while
surviving primitives cluster at lower drift, confirming that higher
implicit drift is associated with opacity collapse.

Figure 6: Dead primitive counts across 10 random seeds.
Adam (red) consistently exceeds Sparse Adam (green), with
the shaded region showing the gap.

Figure 7: Dead primitives vs. learning rate. The gap between
Adam and Sparse Adam is largest at moderate learning rates.

7 DISCUSSION
7.1 Mechanism of Implicit Death Acceleration
Our results provide strong evidence for the conjectured mechanism.
When a visible-step gradient pushes a primitive toward lower opac-
ity (positive gradient in raw space), the subsequent implicit updates
continue this downward push during invisible steps. The decay
ratio of 0.9005 per step means that after the half-life of 6.61 steps,
the implicit update still retains half its initial magnitude—sufficient
to push borderline primitives past the death threshold.

7.2 Regime Dependence
The gradient bias sweep reveals that the conjecture holds most
strongly in the moderate-redundancy regime. When redundancy
pressure is too weak (𝜇𝑔 → 0), implicit updates are small and few
primitives approach the death threshold. When pressure is too
strong (𝜇𝑔 ≫ 0), explicit gradients alone suffice to kill all primitives,
and the implicit contribution is masked. This regime dependence
has practical implications: real 3DGS scenes likely operate in the
moderate regime where some but not all primitives are redundant.
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Figure 8: Per-primitive scatter of cumulative implicit drift
vs. final opacity under Adam. The dead threshold is shown
as a dashed line.

7.3 Implications for Optimizer Design
Our findings suggest that Sparse Adam is preferable for 3DGS opac-
ity optimization, as it avoids the pathological implicit drift without
sacrificing convergence for visible primitives. More generally, any
adaptive optimizer applied to structurally sparse gradient settings
should consider whether implicit updates from momentum decay
are desirable.

7.4 Limitations
Our simulation abstracts several aspects of real 3DGS training:
(1) we model gradients as i.i.d. draws rather than from a differen-
tiable renderer; (2) we omit densification and periodic opacity resets;
(3) our visibility model is simplified relative to actual ray–Gaussian
intersection. These simplifications enable controlled experimen-
tation but limit direct quantitative transfer to production 3DGS
pipelines.

8 CONCLUSION
We investigated the conjecture that implicit Adam updates accel-
erate dead primitive formation in 3D Gaussian Splatting. Through
analytical derivation and stochastic simulation, we showed that
standard Adam produces 59.95% dead primitives compared to 41.5%
for Sparse Adam, with a robust difference of 386.3 ± 37.1 across 10
seeds. We identified the decay ratio of 0.9005 per invisible step, a
half-life of 6.61 steps, and a positive feedback loop linking opacity,
visibility, and implicit drift. These results support the conjecture
and motivate the adoption of sparse optimization strategies for
point-based neural rendering.
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