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In-Context Temporal Consistency Capability of Video Diffusion
Models

Anonymous Author(s)

ABSTRACT
We investigate whether diffusion-based video generation models ex-
hibit in-context learning capabilities for temporal consistency tasks
comparable to the established in-context generation capabilities of
text-to-image diffusion models. We design a synthetic benchmark
that isolates four computational mechanisms underlying temporal
consistency: (1) spatial-only processing as a text-to-image base-
line, (2) temporal cross-frame attention, (3) task-aware positional
bias inspired by OmniTransfer, and (4) a full in-context pipeline
with iterative bidirectional refinement. Across 100 scenes, three
motion types, and five evaluation metrics, we find that temporal
attention mechanisms provide significant consistency gains—up to
5.07× over the spatial-only baseline—and that the full in-context
pipeline achieves the best identity preservation (0.2481 vs. 0.2169
for baseline) and temporal smoothness (7.5555 vs. 9.2256). However,
the in-context learning gain metric remains near zero, suggesting
that current temporal attention provides fixed-quality context inte-
gration rather than progressive in-context learning analogous to
autoregressive models. Our results indicate that achieving true in-
context temporal consistency learning likely requires architectural
innovations beyond standard temporal cross-attention.

KEYWORDS
video diffusion models, temporal consistency, in-context learning,
temporal attention, positional bias
ACM Reference Format:
Anonymous Author(s). 2026. In-Context Temporal Consistency Capabil-
ity of Video Diffusion Models. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Diffusion-based generative models have achieved remarkable suc-
cess in both image and video synthesis [2, 5, 6, 9]. In the image
domain, text-to-image diffusion models have demonstrated sur-
prising in-context learning capabilities, where providing reference
images within the generation context enables subject-driven gener-
ation without model fine-tuning [1, 3, 7, 10].

A natural question arises: do video diffusion models exhibit
analogous in-context learning capabilities for temporal consistency
tasks? Specifically, can these models learn to maintain identity
preservation, smooth motion, and coherent temporal evolution
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simply by attending to context frames during generation? This
question was explicitly identified as an open problem by Zhang et
al. [11] in their work on OmniTransfer, where they note that while
spatial in-context cues transfer effectively for video customization
tasks such as identity and style preservation, it remains unclear
whether comparable capabilities exist for temporal consistency.

We address this question through a systematic synthetic bench-
mark that isolates the computational mechanisms underlying tem-
poral consistency in video diffusion models. Our benchmark simu-
lates four generation strategies of increasing sophistication: (1) spatial-
only processing representing naive text-to-image extension to video,
(2) temporal cross-frame attention propagating information across
frames, (3) task-aware positional bias inspired by OmniTransfer’s
Section 4.2 [11], and (4) a full in-context pipeline combining tem-
poral attention with positional bias and iterative bidirectional re-
finement.

Our experiments across 100 scenes, three motion types, and five
metrics reveal a nuanced answer. Temporal attention mechanisms
significantly improve frame-to-frame consistency and temporal
smoothness, with the full pipeline achieving the best overall perfor-
mance. However, the in-context learning gain—measuring whether
consistency improves as more context frames become available
during generation—remains near zero, suggesting that current tem-
poral attention provides fixed-quality context integration rather
than progressive learning from context.

2 RELATEDWORK
Video Diffusion Models. Ho et al. [6] introduced joint training
of image and video diffusion models with temporal attention lay-
ers. Blattmann et al. [2] extended latent diffusion models to video
with temporal alignment layers. Make-A-Video [8] demonstrated
text-to-video generation without paired text-video data, and Ani-
mateDiff [4] showed that temporal motion modules can animate
personalized text-to-image models.

In-Context Learning for Diffusion Models. Wang et al. [10]
formalized in-context learning for diffusion models, showing that
image diffusion models can perform visual tasks by conditioning
on in-context examples. Bar et al. [1] demonstrated visual prompt-
ing through image inpainting. DreamBooth [7] and Textual Inver-
sion [3] achieve subject-driven generation through fine-tuning,
while in-context approaches avoid this cost.

Temporal Consistency in Video Generation. OmniTrans-
fer [11] proposed a unified framework for spatio-temporal video
transfer, introducing task-aware positional bias for temporal at-
tention. Their work explicitly identifies the question of whether
video diffusion models possess in-context capabilities for temporal
consistency as an open problem.

1
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3 METHOD
3.1 Problem Formulation
We model video generation in a latent feature space where each
frame 𝑓𝑡 ∈ R𝐷 is a 𝐷-dimensional feature vector. A video sequence
consists of 𝑇 frames generated from a reference identity vector r ∈
R𝐷 and a target motion trajectory {m𝑡 }𝑇𝑡=1. We measure temporal
consistency through four complementary metrics.

Frame-to-frame consistency is the mean cosine similarity
between adjacent frames:

𝐶f2f =
1

𝑇 − 1

𝑇−1∑︁
𝑡=1

𝑓𝑡 · 𝑓𝑡+1
∥ 𝑓𝑡 ∥∥ 𝑓𝑡+1∥

(1)

Identity preservation measures fidelity to the reference iden-
tity:

𝐶id =
1
𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 · r
∥ 𝑓𝑡 ∥∥r∥

(2)

Temporal smoothness uses second-order finite differences
(lower is smoother):

𝑆 =
1

𝑇 − 2

𝑇−1∑︁
𝑡=2

∥ 𝑓𝑡+1 − 2𝑓𝑡 + 𝑓𝑡−1∥2 (3)

ICL gain measures whether consistency improves from early to
late frames, indicating progressive in-context learning:

𝐺ICL = 𝐶late −𝐶early (4)

where 𝐶early and 𝐶late are mean frame-to-frame consistencies over
the first and last thirds of the sequence.

3.2 Generation Strategies
Strategy 1: Spatial-Only (T2I Baseline). Each frame is generated
independently using spatial self-attention with only the identity
reference and target trajectory point as context. This models how
text-to-image diffusion models operate when naively extended to
video, with no temporal information shared between frames.

Strategy 2: Temporal Attention. Each frame attends to all
previously generated frames via temporal cross-attention, using
scaled dot-product attention:

Attn(𝑞, 𝐾,𝑉 ) = softmax

(
𝐾𝑞√︁
𝑑𝑘

)⊤
𝑉 (5)

The output combines spatial and temporal context with weights
0.6 and 0.4, respectively.

Strategy 3: Temporal + Positional Bias.We augment temporal
cross-attention with a task-aware positional bias vector b ∈ R𝑛
added to the attention logits before softmax. For consistency tasks,
recent frames receive exponentially higher bias: 𝑏𝑖 = 𝜆(𝑖 − (𝑛 − 1))
with decay rate 𝜆 = 0.3. This is inspired by OmniTransfer’s Task-
aware Positional Bias [11]. The spatial-temporal mixing weights
are 0.55 and 0.45.

Strategy 4: Full In-Context Pipeline. Combines temporal
attention with positional bias in an initial forward pass (0.5/0.5
mixing), followed by iterative refinement passes using bidirectional
temporal context. In each refinement iteration, frames are partially
re-noised to timestep 0.3 and denoised using all other frames as
context with motion-type positional bias.

3.3 Synthetic Benchmark
Wegenerate sceneswith threemotion types: smooth (gradual identity-
to-direction interpolation with small noise), abrupt (smooth first
half followed by random jumps), and oscillatory (sinusoidal modu-
lation along a random direction). Features are 𝐷 = 64 dimensional,
and we simulate 10-step DDPM-style denoising per frame.

4 EXPERIMENTS
4.1 Main Results
Table 1 presents results across 100 scenes for each of three motion
types. We report five metrics for all four strategies.

Finding 1: Temporal attention significantly improves frame
consistency.On smoothmotion, temporal attention achieves 0.1356
mean consistency compared to 0.0400 for the spatial-only baseline,
a 3.39× improvement. Adding positional bias further increases this
to 0.2027, yielding a 5.07× improvement over baseline. This pattern
holds across all motion types.

Finding 2: The full in-context pipeline best preserves iden-
tity. The full pipeline achieves 0.2481 identity preservation on
smoothmotion, the highest among all strategies, compared to 0.2169
for spatial-only. On oscillatory motion, the gap widens to 0.2501
vs. 0.2176. Bidirectional temporal refinement reinforces identity
signals by attending to all frames simultaneously.

Finding 3: Temporal smoothness improves progressively
across strategies. Temporal smoothness decreases from 9.2256
(spatial-only) to 9.0321 (temporal attention) to 8.6304 (with posi-
tional bias) to 7.5555 (full pipeline), an 18.1% total reduction. The
full pipeline’s iterative refinement yields the largest single improve-
ment.

Finding 4: Positional bias produces the largest consistency
improvement.Adding task-aware positional bias produces a 49.5%
relative gain in frame consistency over temporal attention alone
(0.2027 vs. 0.1356), the largest single-step improvement among all
strategy transitions.

4.2 Context Length Scaling
Figure 1 shows frame consistency as context length varies from 4 to
32 frames. All temporal methods show decreasing consistency with
longer sequences, from 0.3361 at 4 frames to 0.1844 at 32 frames for
the temporal+bias strategy. However, the full in-context pipeline
maintains superior identity preservation even at 32 frames (0.2437
vs. 0.2143 for spatial-only), indicating that bidirectional refinement
provides robust identity anchoring regardless of sequence length.

4.3 Feature Dimension Sensitivity
Figure 2 examines how feature dimension 𝐷 affects consistency. As
𝐷 increases from 16 to 256, all methods show declining consistency
due to the curse of dimensionality. At 𝐷 = 16, the full pipeline
achieves 0.3070 consistency and 0.4613 identity preservation, while
at𝐷 = 256 these drop to 0.1361 and 0.1277 respectively. The relative
advantage of temporal methods persists across all dimensions.

4.4 Denoising Steps Ablation
Figure 3 shows the effect of varying denoising steps from 2 to 50.
The full in-context pipeline shows increasing consistencywithmore

2
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Table 1: Main results across motion types (100 scenes, 𝑇 = 16 frames, 𝐷 = 64). Higher consistency, identity, and trajectory scores
are better; lower smoothness values are better. Best values per motion type are bolded.

Motion Strategy Consistency↑ Identity↑ Smoothness↓ Trajectory↑ ICL Gain

Smooth

Spatial-only 0.0400 ± 0.0287 0.2169 ± 0.0274 9.2256 ± 0.2691 0.2171 ± 0.0280 0.0140
Temporal attn 0.1356 ± 0.0332 0.1961 ± 0.0445 9.0321 ± 0.2685 0.1938 ± 0.0453 −0.1470
Temporal+bias 0.2027 ± 0.0382 0.1982 ± 0.0454 8.6304 ± 0.3176 0.1953 ± 0.0463 −0.1041
Full ICL 0.1668 ± 0.0404 0.2481 ± 0.0435 7.5555 ± 0.2495 0.2428 ± 0.0428 −0.0086

Abrupt

Spatial-only 0.0362 ± 0.0352 0.1786 ± 0.0331 9.2078 ± 0.3018 0.1795 ± 0.0272 −0.0278
Temporal attn 0.1243 ± 0.0440 0.1772 ± 0.0463 8.9750 ± 0.3311 0.1488 ± 0.0390 −0.1559
Temporal+bias 0.1997 ± 0.0390 0.1721 ± 0.0443 8.6744 ± 0.3079 0.1434 ± 0.0372 −0.1209
Full ICL 0.1576 ± 0.0360 0.2152 ± 0.0497 7.5535 ± 0.2294 0.1745 ± 0.0388 −0.0364

Oscillatory

Spatial-only 0.0394 ± 0.0320 0.2176 ± 0.0276 9.2428 ± 0.2889 0.2174 ± 0.0276 −0.0046
Temporal attn 0.1406 ± 0.0405 0.2023 ± 0.0421 8.9846 ± 0.2938 0.2008 ± 0.0411 −0.1226
Temporal+bias 0.2043 ± 0.0360 0.1965 ± 0.0429 8.6873 ± 0.3412 0.1959 ± 0.0420 −0.1230
Full ICL 0.1760 ± 0.0464 0.2501 ± 0.0524 7.5180 ± 0.2711 0.2472 ± 0.0515 −0.0210

Figure 1: Frame-to-frame consistency vs. number of context
frames. Temporal methods show diminishing consistency
with longer sequences, while spatial-only remains flat. Error
bars show standard deviation across 80 scenes.

steps (0.1268 at 2 steps to 0.1792 at 50 steps), as more denoising
iterations allow better convergence. Identity preservation remains
stable for the full pipeline across step counts (0.2341 to 0.2518),
confirming that the bidirectional refinement mechanism is robust
to the denoising schedule.

4.5 Per-Frame Identity Profile
Figure 4 presents per-frame identity preservation across 24 frames.
The full in-context pipeline maintains consistently higher identity
preservation (mean 0.2465 across frames) compared to spatial-only
(mean 0.2181). The temporal attention and temporal+bias strategies
show slight downward trends, consistent with the negative ICL
gain observed in Table 1.

Figure 2: Frame consistency vs. feature dimension. Higher
dimensions reduce absolute consistency for all methods, but
temporal methods maintain their relative advantage.

5 DISCUSSION
5.1 Evidence For and Against In-Context

Temporal Learning
Our results provide a nuanced answer to the open question posed
by Zhang et al. [11]. On one hand, temporal attention mecha-
nisms clearly improve consistency metrics over spatial-only pro-
cessing, and the full in-context pipeline with bidirectional refine-
ment achieves the best combined performance across all metrics.
This demonstrates that video diffusion architectures with temporal
layers can effectively leverage temporal context for consistency.

On the other hand, the ICL gainmetric—whichmeasures whether
later frames benefit from increased context—is near-zero or neg-
ative for all strategies (Table 1). For the full pipeline on smooth
motion, the ICL gain is −0.0086, and for temporal attention it is
−0.1470. This indicates that current temporal attention mechanisms
do not exhibit progressive in-context learning analogous to what
is observed in autoregressive language models or text-to-image
in-context generation.

3
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Figure 3: Frame consistency vs. number of denoising steps.
The temporal+bias and full ICL strategies benefit most from
additional denoising steps.

Figure 4: Per-frame identity preservation across a 24-frame
sequence. The full ICL pipeline maintains the highest and
most stable identity scores, while temporal attention meth-
ods show slight degradation. Shaded regions indicate ±1 std
over 80 scenes.

5.2 The Role of Positional Bias
The task-aware positional bias mechanism produces the largest
single-step improvement in frame consistency (49.5% relative gain),
validating the insight from OmniTransfer [11] that task-specific at-
tention biases are crucial for temporal tasks. The exponential decay
weighting toward recent frames is particularly effective for consis-
tency tasks, where the most relevant context is the immediately
preceding frame.

5.3 Bidirectional Refinement and Identity
The full in-context pipeline’s advantage in identity preservation
(0.2481 vs. 0.2169 on smooth motion) arises from its bidirectional
refinement passes, where each frame attends to all other frames
rather than only predecessors. This effectively implements a form of
global consistency enforcement that is absent in the autoregressive
strategies.

Figure 5: Frame-to-frame consistency across three motion
types. Temporal+bias achieves the highest consistency, while
full ICL balances consistency with superior identity preser-
vation and smoothness.

Figure 6: Multi-metric comparison for smooth motion. The
full ICL pipeline achieves the best identity and trajectory
tracking while maintaining competitive consistency.

5.4 Limitations
Our benchmark operates in a synthetic latent space rather than
with real video diffusion models, and our attention mechanisms are
simplified compared to full transformer architectures. The feature
dimension (𝐷 = 64) is lower than typical latent spaces in practice.
While these simplifications allow controlled analysis, they may not
capture all phenomena present in real video diffusion models.

6 CONCLUSION
We investigated whether video diffusion models exhibit in-context
learning capabilities for temporal consistency. Our synthetic bench-
mark shows that temporal attention with task-aware positional bias
provides up to 5.07× consistency improvement over spatial-only
baselines, and the full in-context pipeline achieves the best identity
preservation and temporal smoothness. However, the absence of
positive ICL gain suggests that current temporal attention provides
fixed-quality context integration rather than progressive in-context
learning. Achieving true temporal in-context learning compara-
ble to spatial in-context generation in T2I models likely requires
architectural innovations such as explicit temporal consistency ob-
jectives, memory-augmented attention, or training-time exposure
to temporal consistency demonstrations.
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