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ABSTRACT

Dynamic shapes such as flexible molecules require descriptors that
capture not just a single conformation but the range of variability.
We develop variability-aware rotation-invariant descriptors by mod-
eling distributions over tensor moment invariant vectors from con-
formational ensembles. We compare four approaches: mean-only,
Gaussian (mean + covariance with Bures-Wasserstein distance),
non-parametric Wasserstein, and kernel Maximum Mean Discrep-
ancy (MMD). Experiments on synthetic molecular-like shape ensem-
bles show that all distributional methods maintain perfect rotation
invariance while improving binding site matching. The Wasserstein
descriptor achieves the best binding match score (0.316 vs. 0.079 for
mean-only), while kernel MMD provides the most robust discrim-
ination at high variability. All methods achieve perfect retrieval
precision, confirming that rotation-invariant moment features pro-
vide strong class separation even for flexible shapes.
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1 INTRODUCTION

Rotation-invariant shape descriptors are essential for comparing
geometric objects modulo orientation [1, 5]. However, many shapes
of interest—particularly biological molecules—exhibit significant
conformational variability, meaning a single invariant vector cannot
capture the full shape information. Duda [3] identified the inclusion
of shape variability as an open problem for tensor-based rotation-
invariant descriptors.

We address this by developing distributional rotation-invariant
descriptors that represent shape ensembles as probability distri-
butions over invariant vectors, and comparing these distributions
using principled statistical distances.

2 METHODOLOGY
2.1 Invariant Ensemble Construction

For a dynamic shape with conformations {Sy, ..., Sk}, we compute
the rotation-invariant moment descriptor ¢ (S ) for each conforma-
tion, yielding an ensemble {¢(S1),...,#(Sk)} C RP.

2.2 Distributional Descriptors

Mean-only. D = Ii( >k ¢(Sk), compared via Euclidean distance.
This baseline ignores variability.

Gaussian (Mean + Covariance). We model the ensemble as
N (p, %) and compare using the Bures-Wasserstein distance [2]:
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Wasserstein. Per-dimension 1D Wasserstein distance [6], aver-
aged across invariant dimensions.

Kernel MMD. Maximum Mean Discrepancy with Gaussian ker-
nel [4]:

MMD? = E[k(X,X")] + E[k(Y, Y")] - 2E[k(X, Y)]

2.3 Experimental Setup

We generate 6 classes of molecular-like 3D shapes, each with 4
independent ensemble samples of 15 conformations. Variability
levels range from 0.05 to 0.5, controlling the magnitude of confor-
mational changes (local noise and segment rotations). Binding sites
are generated as subsets of base shapes.

3 RESULTS
3.1 Method Comparison

Figure 1 compares all methods across four quality metrics. All
methods achieve perfect retrieval precision and rotation invariance.
The key differentiator is binding site matching, where Wasserstein
(0.316) substantially outperforms mean-only (0.079).
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Figure 1: Comparison of variability-aware descriptors across
four evaluation metrics.

3.2 Effect of Variability Level

Figure 2 shows retrieval precision as a function of shape variability.
All methods maintain perfect precision across all variability lev-
els, indicating that tensor moment invariants provide robust class
separation for molecular-like shapes.

3.3 Binding Site Matching

Figure 3 highlights the advantage of distributional descriptors for
binding site matching. The Wasserstein method captures the distri-
butional overlap between conformational ensembles and binding
site geometry more effectively than point estimates.
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Figure 2: Retrieval precision vs. shape variability level for
each descriptor method.
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Figure 3: Retrieval precision vs. binding site matching score.

3.4 Computation Time

Figure 4 shows that mean-only is fastest (1.1s), while distributional
methods require 2.3-2.4s per ensemble. The modest overhead is
justified by improved binding matching.

4 DISCUSSION

Distributional descriptors improve task-specific matching.
While all methods achieve perfect class-level retrieval, the distri-
butional approaches significantly improve binding site matching,
which requires capturing the range of possible conformations.

Wasserstein is the best practical choice. It provides the high-
est binding match score with computation time comparable to
kernel MMD, and does not require bandwidth tuning.

Rotation invariance is preserved by construction. Since
each individual invariant vector is rotation-invariant, any func-
tion of the ensemble (mean, covariance, distribution) inherits this
invariance.

Applications to drug discovery. Comparing distributional
descriptors of molecular conformational ensembles with binding
site geometry could improve virtual screening and drug design
workflows.
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Figure 4: Computation time per ensemble comparison for
each method.

5 CONCLUSION

We introduced distributional rotation-invariant descriptors that
incorporate shape variability by modeling ensembles of confor-
mations as probability distributions over invariant vectors. The
Wasserstein-based approach emerges as the most effective for bind-
ing site matching, demonstrating that capturing conformational
variability is essential for biologically relevant shape comparison.
Our framework directly addresses the open problem identified by
Duda [3] and provides a foundation for variability-aware geometric
analysis.
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