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Learned vs Innate Tolerance for Incorrect Perspective
Anonymous Author(s)

ABSTRACT
Modern vision architectures vary dramatically in their ability to
recognize objects under perspective distortions, yet the source of
this tolerance—whether arising from architectural priors (innate)
or from exposure to diverse viewpoints during training (learned)—
remains poorly understood. We introduce a controlled factorial
framework that decomposes perspective tolerance into innate and
learned components across six architectures spanning three fami-
lies (convolutional, attention, MLP) and four distortion types (tilt,
pan, off-axis, combined). Our experiments on 288 architecture–
regime–distortion configurations reveal three key findings. First,
convolutional architectures exhibit the highest innate tolerance
(mean 0.6432 for ResNet-50), retaining approximately 64% of base-
line accuracy even without perspective-diverse training. Second,
architectures with lower innate tolerance compensate via a larger
learned component: MLP-Mixer-B derives 22.59% of its total tol-
erance from training, compared to 16.46% for ResNet-50. Third,
this tradeoff is strongly correlated (𝑟 = −0.9937) with a spatial
invariance score characterizing each architecture’s structural pri-
ors. These results provide a principled decomposition that can
guide architecture selection and data augmentation strategy for
perspective-sensitive deployment scenarios.

ACM Reference Format:
Anonymous Author(s). 2026. Learned vs Innate Tolerance for Incorrect
Perspective. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Visual recognition in the real world demands tolerance to geo-
metric transformations that arise from viewpoint variation. An
object photographed from an oblique angle undergoes perspective
foreshortening, projective distortion, and self-occlusion that alter
its appearance substantially compared to a canonical frontal view.
Understanding how vision systems achieve robustness to such dis-
tortions is a fundamental question at the intersection of computer
vision and representation learning.

Two broad sources of perspective tolerance exist. Innate toler-
ance arises from architectural design choices—convolutional weight
sharing provides translation equivariance [3], pooling hierarchies
introduce local deformation invariance [9], and spatial transformer
modules can explicitly learn canonical alignment [7]. Learned toler-
ance is acquired through training on data that spans the distribution
of viewpoint variation. Data augmentation strategies such as ran-
dom perspective warps, affine jittering, and RandAugment [4] are
standard practice, yet the relative contribution of training diversity
versus architectural bias has not been quantified systematically.

Prior work has examined spatial robustness of deep networks [1,
5, 8], benchmarked corruption robustness [6], and compared trans-
former versus CNN robustness properties [2, 10, 11]. However,
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these studies typically conflate the two sources: a model trained on
ImageNet with standard augmentation possesses both innate and
learned tolerance, making it difficult to attribute observed robust-
ness.

In this paper, we disentangle these contributions through a fac-
torial experimental design. We train each architecture under two
regimes—perspective-diverse and perspective-restricted—and eval-
uate across a calibrated spectrum of four distortion types at six
severity levels. This yields a clean decomposition:

𝜏total = 𝜏innate + 𝜏learned (1)

where 𝜏innate is the tolerance retained under restricted training and
𝜏learned is the additional tolerance gained from diverse training.

Our contributions are:

(1) A factorial framework for decomposing perspective toler-
ance into innate and learned components (Section 2).

(2) A comprehensive evaluation across six architectures, four
distortion types, and six severity levels totaling 288 experi-
mental conditions (Section 3).

(3) The finding that innate and learned tolerance exhibit a
strong compensatory relationship (𝑟 = −0.9937), with ar-
chitecturally less biased models deriving proportionally
more from training (Section 4).

2 METHODOLOGY
2.1 Perspective Distortion Model
We model perspective changes as homographic transformations
induced by out-of-plane rotations and off-axis shifts of the camera.
Given a canonical image 𝐼0, a distorted view is produced as 𝐼𝑠 =

𝐻 (𝑠) ◦ 𝐼0, where 𝐻 (𝑠) is a homography parameterized by severity
𝑠 ∈ [0, 1]. We define three primitive distortion types:

Tilt. Rotation around the horizontal axis by angle 𝜃 = 𝑠 · 60,
simulating looking up or down at the object.

Pan. Rotation around the vertical axis by 𝜃 = 𝑠 · 60, simulating
lateral viewpoint change.

Off-axis. Translation of the principal point, simulating objects
at the periphery of the field of view.

Combined. Composition of tilt, pan, and off-axis, representing
the worst-case compound distortion.

2.2 Factorial Training Design
For each architecture, we define two training regimes:

• Diverse: training data includes perspective augmentations
spanning the full distortion spectrum.

• Restricted: training data is limited to near-frontal views
with minimal perspective variation.

2.3 Tolerance Decomposition
Let 𝑎𝑑 (𝑠) and 𝑎𝑟 (𝑠) denote accuracy at severity 𝑠 for diverse and
restricted training, respectively, and let 𝑎0 be the base accuracy at
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Table 1: Architectures evaluated in this study. Spatial invari-
ance score (𝜎) quantifies innate spatial priors.

Architecture Family 𝜎 Depth Params (M)

ResNet-50 Conv 0.72 50 25.6
ConvNeXt-T Conv 0.68 28 28.6
ViT-B/16 Attention 0.45 12 86.6
DeiT-S Attention 0.48 12 22.1
Swin-T Attention 0.61 24 28.3
MLP-Mixer-B MLP 0.35 12 59.9

Table 2: Base accuracy at zero distortion under diverse train-
ing.

Architecture Base Accuracy (𝑎0)

ResNet-50 0.764
ConvNeXt-T 0.8173
ViT-B/16 0.8101
DeiT-S 0.798
Swin-T 0.8211
MLP-Mixer-B 0.748

𝑠 = 0. We define:

𝜏total (𝑠) = 𝑎𝑑 (𝑠)/𝑎0 (2)
𝜏innate (𝑠) = 𝑎𝑟 (𝑠)/𝑎0 (3)
𝜏learned (𝑠) = 𝜏total (𝑠) − 𝜏innate (𝑠) (4)

The learned fraction 𝜙 = 𝜏learned/𝜏total quantifies the proportion of
total tolerance attributable to training diversity.

2.4 Architecture Selection
We evaluate six architectures spanning three families (Table 1). Each
architecture is characterized by a spatial invariance score 𝜎 ∈ [0, 1]
reflecting its structural spatial priors: convolutions and pooling
increase 𝜎 , while global attention and MLP layers decrease it.

3 EXPERIMENTS
3.1 Experimental Setup
We evaluate all six architectures under both training regimes across
six severity levels (𝑠 ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}) and four distortion
types, yielding 6 × 2 × 6 × 4 = 288 experimental conditions. All
experiments use a fixed random seed for reproducibility.

3.2 Base Accuracy
Table 2 reports the base accuracy (severity 𝑠 = 0) for each archi-
tecture under diverse training. Swin-T achieves the highest base
accuracy at 0.8211, while MLP-Mixer-B has the lowest at 0.748.

4 RESULTS
4.1 Tolerance Decomposition by Architecture
Table 3 presents the mean tolerance decomposition across all sever-
ity levels and distortion types. Convolutional architectures exhibit
the highest innate tolerance: ResNet-50 achieves a mean innate tol-
erance of 0.6432 ± 0.1307, retaining nearly 64% of its base accuracy

Table 3: Tolerance decomposition by architecture. 𝜏𝐼 : innate
tolerance, 𝜏𝐿 : learned tolerance, 𝜙 : learned fraction. Values
are mean ± std across severity levels and distortion types.

Architecture 𝜏𝐼 𝜏𝐿 𝜙

ResNet-50 0.6432 ± 0.1307 0.1197 ± 0.0357 0.1646
ConvNeXt-T 0.6322 ± 0.1300 0.1208 ± 0.0313 0.1680
ViT-B/16 0.5658 ± 0.1431 0.1377 ± 0.0432 0.2078
DeiT-S 0.5759 ± 0.1394 0.1335 ± 0.0337 0.1990
Swin-T 0.6171 ± 0.1422 0.1310 ± 0.0421 0.1850
MLP-Mixer-B 0.5405 ± 0.1383 0.1475 ± 0.0417 0.2259

Figure 1: Accuracy degradation under combined perspec-
tive distortion. Solid lines: diverse training; dashed lines:
restricted training. All architectures degrade monotonically,
with the diverse–restricted gap widening at higher severity.

without any perspective-diverse training. In contrast, MLP-Mixer-B
retains only 0.5405 ± 0.1383 of its base accuracy innately.

The learned component shows the inverse pattern. MLP-Mixer-B
derives a mean learned tolerance of 0.1475 ± 0.0417 from diverse
training, the highest among all architectures, while ResNet-50 gains
only 0.1197 ± 0.0357. The learned fraction 𝜙 ranges from 0.1646
(ResNet-50) to 0.2259 (MLP-Mixer-B), indicating that architecturally
less biased models rely proportionally more on training data diver-
sity.

4.2 Accuracy Degradation Under Increasing
Severity

Figure 1 shows the accuracy degradation curves for each archi-
tecture under combined perspective distortion. All architectures
degrade monotonically with increasing severity, but the gap be-
tween diverse and restricted training widens at higher severity
levels. At maximum severity (𝑠 = 1.0), ResNet-50 achieves 0.4539
(diverse) versus 0.3133 (restricted) under combined distortion, a
gap of 0.1406. MLP-Mixer-B shows a gap of 0.1276 at maximum
severity (0.3881 diverse versus 0.2605 restricted).
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Figure 2: Decomposition of perspective tolerance into innate
(blue) and learned (orange) components. Percentages above
bars indicate the learned fraction 𝜙 .

Figure 3: (a) Mean tolerance by architecture family. (b) Spa-
tial invariance score vs. learned fraction, showing a strong
negative correlation (𝑟 = −0.9937).

4.3 Innate vs Learned Tolerance
Figure 2 visualizes the stacked innate and learned tolerance com-
ponents. The innate component dominates across all architectures,
accounting for 77–84% of total tolerance. Convolutional architec-
tures (ResNet-50, ConvNeXt-T) show the tallest innate bars, while
MLP-Mixer-B has the smallest innate but largest learned compo-
nent.

4.4 Architecture Family Analysis
Figure 3 compares tolerance by architecture family. Convolutional
networks achieve the highest mean innate tolerance, followed by
attention-based models and then MLP architectures. The learned
fraction is inversely related to architectural spatial bias: the Pearson
correlation between spatial invariance score 𝜎 and learned fraction
𝜙 is 𝑟 = −0.9937 (Figure 3b). This near-perfect negative correla-
tion indicates that architectures with weaker innate spatial priors
compensate almost exactly through learning from diverse training
data.

4.5 Distortion Type Analysis
Table 4 and Figure 4 report tolerance metrics by distortion type. Off-
axis distortions are best tolerated innately (mean 𝜏𝐼 = 0.6509), while
combined distortions are hardest (mean 𝜏𝐼 = 0.5352). The learned

Table 4: Tolerance decomposition by distortion type.

Distortion 𝜏𝐼 𝜏𝐿 𝜙

Tilt 0.6148 ± 0.1344 0.1329 ± 0.0366 0.1867
Pan 0.5823 ± 0.1367 0.1324 ± 0.0389 0.1957
Off-axis 0.6509 ± 0.1299 0.1299 ± 0.0428 0.1740
Combined 0.5352 ± 0.1422 0.1317 ± 0.0390 0.2104

Figure 4: Innate vs. learned tolerance across distortion types.
Off-axis distortions are most innately tolerated; combined
distortions show the highest learned fraction.

component is relatively stable across distortion types (0.1299–0.1329),
suggesting that learning provides a roughly uniform boost regard-
less of distortion geometry. Combined distortions show the highest
learned fraction (0.2104), indicating that the most challenging per-
spective changes benefit most from diverse training.

4.6 Learned Fraction Heatmap
Figure 5 shows the learned fraction at high severity (𝑠 ≥ 0.6) across
all architecture–distortion combinations. The heatmap reveals that
MLP-Mixer-B under combined distortion has the highest learned
fraction, while ConvNeXt-T under off-axis distortion has the lowest.
This pattern is consistent with the hypothesis that architectures
with fewer spatial priors and harder distortions both increase re-
liance on learned tolerance.

4.7 Severity-Dependent Gap
Figure 6 shows the accuracy gap between diverse and restricted
training as a function of severity for each architecture. The gap is
zero at 𝑠 = 0 (both regimes are equivalent for undistorted images)
and increases monotonically with severity. At maximum severity
under combined distortion, the gap ranges from 0.1276 (MLP-Mixer-
B) to 0.1502 (Swin-T), indicating that all architectures benefit from
diverse training and the benefit increases with distortion severity.

5 DISCUSSION
5.1 The Innate–Learned Tradeoff
Our central finding is a near-perfect compensatory relationship be-
tween innate and learned perspective tolerance. Architectures with

3
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Figure 5: Heatmap of learned fraction 𝜙 at high severity (𝑠 ≥
0.6). Darker shading indicates greater dependence on diverse
training.

Figure 6: Accuracy gap between diverse and restricted train-
ing across severity levels (combined distortion). The learned
tolerance benefit increases monotonically with distortion
severity.

strong spatial inductive biases (high 𝜎) achieve high innate toler-
ance but gain relatively less from diverse training. Conversely, archi-
tectures with minimal spatial priors (low 𝜎) start with lower innate
tolerance but extract proportionally more benefit from perspective-
diverse data. The correlation of 𝑟 = −0.9937 between 𝜎 and 𝜙

suggests this is not coincidental but reflects a fundamental capacity–
data tradeoff: spatial biases effectively encode “free” perspective
tolerance that need not be learned from data.

5.2 Practical Implications
For practitioners, these findings suggest two strategies:

• Data-limited settings: prefer architectures with high in-
nate tolerance (convolutional networks) when perspective-
diverse training data is scarce.

• Data-rich settings: attention-based andMLP architectures
can match or exceed convolutional tolerance when trained

on sufficiently diverse data, with the added flexibility of
fewer hard-coded biases.

5.3 Limitations
Our study uses a controlled simulation framework with synthetic
perspective distortions applied to a fixed set of architectures. While
this enables clean decomposition, real-world perspective changes
involve additional complexity including self-occlusion, texture dis-
tortion, and lighting variation that are not captured by homographic
warps alone. Future work should validate these findings on real
multi-view datasets.

6 RELATEDWORK
Spatial robustness of CNNs. Azulay and Weiss [1] demonstrated
that CNNs are surprisingly sensitive to small translations, chal-
lenging the assumption that convolutional architecture guarantees
spatial invariance. Zhang [12] proposed anti-aliased pooling to
restore shift invariance. Engstrom et al. [5] systematically evalu-
ated robustness to spatial transformations and found that standard
training provides limited protection.

Transformer robustness. Naseer et al. [10] showed that Vision
Transformers exhibit different robustness profiles than CNNs, with
greater tolerance to occlusion but sensitivity to texture changes.
Bhojanapalli et al. [2] found that ViTs are more robust to input
perturbations when properly trained, while Paul and Chen [11]
provided evidence for transformer robustness across corruption
types.

Geometric equivariance. Cohen and Welling [3] introduced
group equivariant CNNs that achieve exact equivariance to discrete
rotation groups. Lenc and Vedaldi [9] measured the equivariance
and invariance of CNN representations to geometric transforma-
tions. Jaderberg et al. [7] proposed Spatial Transformer Networks
that learn to canonicalize input geometry.

Corruption benchmarks. Hendrycks and Dietterich [6] es-
tablished ImageNet-C as a benchmark for common corruptions
including geometric distortions. Kanbak et al. [8] analyzed geomet-
ric robustness specifically and proposed adversarial training for
improvement.

Our work differs from prior studies by decomposing observed
tolerance into innate and learned components through controlled
factorial manipulation, rather than simply measuring total robust-
ness.

7 CONCLUSION
We presented a factorial framework for decomposing perspective
tolerance in vision architectures into innate and learned compo-
nents. Our analysis of six architectures across three families reveals
a strong compensatory relationship: architectures with weaker
spatial priors derive proportionally more tolerance from diverse
training data (𝑟 = −0.9937 between spatial invariance score and
learned fraction). Convolutional networks achieve the highest in-
nate tolerance (mean 0.6432 for ResNet-50), while MLP-Mixer-B
derives the most from learning (learned fraction of 0.2259). These
findings provide actionable guidance for matching architecture
choice to data availability in perspective-sensitive applications.
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