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ABSTRACT

Learning-based 3D geometry estimation methods promise scala-
bility and end-to-end optimization, yet maintaining physical con-
sistency of predicted depth and camera poses across large-scale
environments and long trajectories remains a fundamental open
problem. We present a hierarchical framework that decomposes
physically consistent geometry learning into three complemen-
tary tiers operating at increasing spatial scales: (1) local epipolar
constraints between frame pairs, (2) cross-window compositional
consistency via SE(3) closure and scale alignment, and (3) global
physical plausibility through gravity alignment and ground-plane
anchoring. Central to our approach is a differentiable pose graph
optimizer on the SE(3) manifold that distributes loop-closure cor-
rections across the full trajectory, enabling gradient feedback from
global consistency to local predictions. We further introduce chun-
ked attention with overlap consistency distillation, reducing com-
putational complexity from O(N?) to O(N - K) for sequences of N
frames with window size K. Experiments on synthetic trajectories
demonstrate that loop-closure-augmented pose graph optimization
reduces translation error by up to 20.4% over sequential-only base-
lines, hierarchical scale anchoring reduces the scale coefficient of
variation by 14.4X under drift, and our full model achieves 40.0%
lower translation error than a physics-unaware baseline. For se-
quences of 1,000 frames, chunked processing achieves a 47.1X com-
putational speedup over global attention with minimal consistency
degradation.

1 INTRODUCTION

Accurate 3D geometry estimation from images—recovering depth
maps, camera poses, and dense 3D structure—is a cornerstone of
computer vision with applications spanning autonomous driving,
robotics, augmented reality, and large-scale mapping. Classical geo-
metric pipelines based on Structure-from-Motion (SfM) [9] and
Simultaneous Localization and Mapping (SLAM) [7] enforce phys-
ical consistency through explicit constraints: epipolar geometry,
bundle adjustment [12], and loop closure. However, these methods
are brittle in textureless regions, under illumination changes, and
in the presence of repetitive structures.

Learning-based methods have emerged as a compelling alter-
native, leveraging data-driven priors for robust predictions even
in challenging conditions. Foundation models such as DPT [8],
DUSt3R [6], MASt3R [2], and VGGT [14] demonstrate impressive
per-frame or per-pair accuracy. Yet as Xu et al. [15] identify in
their work on GPA-VGGT, learning physically consistent geometry
at scale remains a challenging open problem: without structured
constraints, learned predictions suffer from scale drift over long
trajectories, inconsistent geometry across viewpoints, and viola-
tion of basic physical laws such as gravity alignment and surface
non-penetration.

The fundamental tension is clear: classical methods provide con-
sistency guarantees but lack robustness; learned methods provide
robustness but lack consistency. We propose to resolve this tension
by making classical geometric constraints differentiable and embed-
ding them as structured loss functions within a learning framework.
Our key insight is that physical consistency can be decomposed
into a hierarchy of constraints at three spatial scales:

o Tier 1 (Local): Epipolar geometry between frame pairs en-
sures that predicted depth and pose are mutually consistent
within each pair.

e Tier 2 (Window): SE(3) composition closure and depth
scale consistency across overlapping processing windows
prevent drift accumulation.

e Tier 3 (Global): Gravity alignment and ground-plane con-
sistency enforce physical plausibility across the entire tra-
jectory.

This hierarchical decomposition enables a coarse-to-fine training
curriculum: local constraints stabilize early training, while global
constraints refine long-range consistency as predictions improve.
We instantiate this framework with three technical contributions:

(1) A differentiable pose graph optimizer on the SE(3) man-
ifold that takes noisy per-window relative poses and pro-
duces globally consistent absolute poses via fixed-iteration
Gauss-Newton optimization, enabling end-to-end gradient
flow from global consistency to local predictions.

(2) A hierarchical scale anchoring mechanism that grounds
metric scale using physical priors (known object sizes, grav-
ity direction, ground plane height) and propagates scale
consistency across the trajectory.

(3) Chunked attention with overlap consistency distilla-
tion that processes long sequences in overlapping windows,
reducing complexity from O(N?) to O(N - K) while main-
taining inter-window consistency through bidirectional
distillation.

We validate our approach through controlled experiments on
synthetic trajectories with known ground truth, demonstrating sig-
nificant improvements in pose accuracy, scale stability, and gravity
coherence, while achieving substantial computational savings at
scale.

1.1 Related Work

Geometric 3D Reconstruction. Classical StM [9] and SLAM [7]
pipelines enforce geometric consistency through feature matching,
epipolar geometry verification, and bundle adjustment [12]. Graph-
based optimization frameworks such as g2o [5] provide efficient
pose graph optimization with loop closure. DROID-SLAM [11]
pioneered differentiable bundle adjustment layers within a deep
network, bridging classical and learned approaches.
Learning-Based Depth and Pose Estimation. Monocular
depth estimation has progressed from supervised approaches [8]
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to self-supervised methods [3, 10]. Metric depth models such as
Metric3D v2 [4] and Depth Pro [1] address scale ambiguity for sin-
gle images but do not enforce multi-view consistency. Multi-view
methods including DUSt3R [6], MASt3R [2], and VGGT [14] predict
joint geometry from image collections using transformer archi-
tectures [13], but physical consistency across large-scale scenes
remains unsolved.

Physics-Aware Geometry Learning. GPA-VGGT [15] adapts
VGGT to large-scale localization through geometry- and physics-
aware self-supervised losses, demonstrating that naive fine-tuning
degrades consistency and motivating structured loss design. Our
work builds on this insight by providing a comprehensive hierar-
chical framework with differentiable pose graph optimization and
scalable chunked processing.

2 METHODS

2.1 Problem Formulation

Given a sequence of N images {Ii}fi , With camera intrinsics K, we
seek to estimate per-frame depth maps {d; }i\i , and camera-to-world
poses {T; € SE(S)};Z1 that are: (1) geometrically consistent—depths
and poses agree across overlapping views; (2) metrically stable—the
ratio between predicted and true scale remains constant across
the trajectory; (3) physically plausible—predictions respect gravity,
ground plane, and rigid body constraints.

2.2 Hierarchical Physics-Consistent Loss

We define a multi-tier loss £ = Zizl ALy with weights A that
can be scheduled during training.

Tier 1: Epipolar Consistency. For each frame pair (i, j), we
compute the essential matrix E;; = [t;j]xR;j from the predicted
relative pose and evaluate the symmetric epipolar (Sampson) dis-
tance:

T 2
1 1 (x; Eijx;)
L= 20 100 24 ey < ety
(i,j)eP xeQ ijXill].p inJ 1:2

where P denotes sampled frame pairs and Q the pixel domain.

Tier 2: Composition Closure. For any cycle of relative poses
To1, T12, - - -, T(n—1)0, the composed transformation should be the
identity:

Leomp = [|log(T(p_1)90 -0 T01)||2 (2)

where log is the SE(3) logarithmic map. This provides a self-supervised
signal requiring no ground truth.

Tier 2: Scale Consistency. For overlapping frames between
adjacent windows, we penalize depth scale variation via the log-
ratio loss:

da(x)
dp(x)

where d4, dp are depth predictions from windows A and B for the
same pixel x.

Tier 3: Gravity Alignment. All predicted rotations should
agree on a single gravity direction in the world frame. Without

Lgcale = Var [lOg (3

Anon.

needing to know the true gravity, we penalize variance:

N
1 . . _ . 1 A
-Egrav = 1_N ; (gl . g) , gi= R;rgcam, g= normalize (N Z gi

1

4)

Tier 3: Ground Plane. Points classified as ground should be

coplanar with consistent camera height above the plane, combining
a planarity loss with a height prior.

2.3 Differentiable Pose Graph Optimizer
We formulate global pose consistency as a nonlinear least-squares

problem on the SE(3) manifold. Given initial poses {T;O)} and mea-
sured relative poses {T‘i’}eas} on a graph with edges & (both sequen-
tial and loop-closure), we optimize:

(5i55e(3)) (,.,J.Z):e g

®)
where w;; are confidence weights and Exp/log are the SE(3) expo-
nential/logarithmic maps.

We solve this with a fixed number of Gauss-Newton iterations
(we use 15), ensuring a fixed computation graph depth for stable
backpropagation. The first pose is fixed to resolve gauge freedom.
Edge weights w;; are predicted by the network, allowing it to learn
which measurements to trust.

2.4 Chunked Attention with Overlap
Distillation

To handle sequences of N > K frames where global attention is

prohibitive, we process overlapping windows of K frames with

stride K — O (overlap O). For each overlap region, a confidence-

weighted bidirectional distillation loss enforces agreement:

Loverlap = Z

X

da\? dg\?
ca(x) (log E) +cp(x) (log E) ] (6)

where dp = % is the confidence-weighted fused depth

and cy, cp are learned per-pixel confidence maps. This reduces

complexity to O([%] -Kz), which is O(N - K) for K < N.

3 RESULTS

We evaluate our framework through six controlled experiments
on synthetic trajectories with known ground truth. Synthetic data
enables exact measurement of physical consistency metrics with-
out confounds from real-world noise. All trajectories use camera
intrinsics f = fy = 500, image resolution 256 X 256, and ray-cast
depth from planar geometry.

3.1 Pose Graph Optimization with Loop Closure

We generate a circular trajectory of 30 poses and construct a pose
graph with sequential edges plus loop-closure edges. Relative pose
measurements are corrupted with Gaussian noise at five levels
(0 € {0.01,0.05,0.10, 0.20, 0.30}). We compare three configurations:
no optimization (chained noisy poses), sequential-only pose graph
(no loop closures), and full pose graph with loop closures.
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Table 1: Pose graph optimization results. Translation error
(m) and rotation error (degrees) at varying noise levels. Loop
closure consistently improves over sequential-only optimiza-
tion.

No Opt. Seq. Only With Loops

Trans. Rot.

o Trans. Rot. Trans. Rot.

0.01 0.40 1.41 0.40 1.41 0.34 1.18
0.05 1.09 6.80 1.09 6.80 0.94 6.27
0.10 1.52 17.68 1.52 17.68  1.32  14.02
0.20 419 4738 419 4738 3.34 40.64
0.30 4.62 37.67  4.62 37.67 4.21 30.63

(a) Translation Error (b) Rotation Error

. === No Optimization = No Optimization
£ 4| mmm Sequential Only =) 40 | ™= Sequential Only
;5 === With Loop Closure % === With Loop Closure
& =
@] g 301
a
£.] F
g 8 20 A
% 1 :§ 10
i 5 i
& &
0- 0-
0.01 0.05 0.1 0.2 0.3 0.01 0.05 0.1 0.2 0.3

Noise Level Noise Level

Figure 1: Pose graph optimization comparison at varying
noise levels. (a) Translation error and (b) rotation error. Loop-
closure edges provide consistent improvement, with gains
increasing at higher noise levels where drift is most severe.

Table 1 reports translation and rotation errors. Loop-closure-
augmented optimization consistently outperforms both baselines.
At o = 0.20, loop closure reduces translation error from 4.19m
to 3.34 m (20.4% reduction) and rotation error from 47.4° to 40.6°
(14.2% reduction).

3.2 Scale Drift Analysis

We evaluate scale consistency on a 100-frame forward trajectory
with varying drift rates (§ € {0.0,0.001, 0.003,0.005} per frame). The
scale coefficient of variation (CV) measures the standard deviation
of the scale factor across trajectory segments normalized by its
mean.

Table 2 shows that hierarchical scale anchoring dramatically
reduces scale drift. At drift rate § = 0.005, the uncorrected CV is
0.1165 while the corrected CV is 0.0081, a 14.4X reduction. Even at
moderate drift (§ = 0.001), anchoring reduces CV from 0.0274 to
0.0020 (13.7x).

3.3 Loss Component Ablation

We systematically ablate each loss component on a 40-frame for-
ward trajectory. Table 3 reports translation error, rotation error,
scale CV, and gravity coherence for seven configurations.

The full model achieves the lowest translation error (0.359 m), a
40.0% improvement over the physics-unaware baseline (0.598 m).
Removing the epipolar loss causes the largest single degradation
(0.463 m, +29.0% vs. full), followed by removing composition/scale

Conference’17, July 2017, Washington, DC, USA

Table 2: Scale consistency analysis. Scale coefficient of varia-
tion (CV, lower is better) and absolute drift rate at varying
per-frame drift. Hierarchical scale anchoring reduces CV by
up to 14.4Xx.

Uncorrected ~ With Scale Anchoring
Drift Rate  CV |Drift| Cv |Drift|
0.000 0.0000 0.0000 0.0000 0.0000
0.001 0.0274 0.0099 0.0020 0.0003
0.003 0.0755 0.0273  0.0053 0.0008
0.005 0.1165 0.0421 0.0081 0.0012

(a) Scale Coefficient of Variation (b) Absolute Scale Drift Rate

0.12 A
—— Uncorrected 0.04 4 —® Uncorrected
0.10 1 =¥ With Scale Anchoring — ~#~ With Scale Anchoring
Q
2
] 4
> 0.08 1 x 0.03
S &
[} j
g 008 A 0.02
3 )
0.04 sl
o
@0 0.01
0.02 -
ey —y
0.00 T

0.000 0.001 0.002 0.003 0.004 0.005
Drift Rate

0.000 0.001 0.002 0.003 0.004 0.005
Drift Rate

Figure 2: Scale drift analysis. (a) Scale coefficient of variation
and (b) absolute scale drift rate versus per-frame drift rate.
Hierarchical scale anchoring maintains near-zero scale vari-
ation even under substantial drift.

Table 3: Loss ablation study. Each row removes one loss com-
ponent from the full model. Translation error (m), rotation
error (degrees), scale CV, and gravity coherence (higher is
better) are reported. The full model achieves the best perfor-
mance across all metrics.

Configuration Trans. (m) Rot. (°) Scale CV  Grav. Coh.
Full (Ours) 0.359 3.46 7.8e-5 0.972
No Epipolar 0.463 3.93 10.0e-5 0.971
No Composition 0.411 3.70 8.9e-5 0.971
No Gravity 0.379 3.56 8.3e-5 0.971
No Scale 0.411 3.70 8.9e-5 0.971
No Ground 0.369 3.51 8.1e-5 0.972
Baseline 0.598 4.46 12.6e-5 0.970

losses (0.411 m, +14.5%). Gravity coherence is highest (0.972) with
the full model.

3.4 Scalability Analysis

We measure computational complexity for global attention (O(N?))
versus chunked processing with window size K=16 and overlap
O=4. Figure 4 shows that the chunked approach provides increasing
speedups as sequence length grows. At N = 1,000 frames, chunked
processing requires only 21,248 operations versus 1,000,000 for
global attention, a 47.1X reduction. Even at N = 200, the speedup
is 9.2x with only 17 processing windows.
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Loss Component Ablation Study

e
o

— =4
g
8 04 =3
= 8
= 52
202 :
[ g1
= -4
0.0 0

0.000125

0.000100

0.000075

Scale CV

0.000050

Gravity Coh.

0.000025

0.000000

N o > @
Sy & & & F & o
W& e
O & & TS
< o
© ¢

Figure 3: Loss ablation study showing the impact of remov-
ing each physics-consistent loss component. The full model
(leftmost bar, green) achieves the best performance across all
four metrics. The baseline without any physics losses (right-
most bar, gray) performs worst.

(a) Computational Complexity (b) Chunked vs. Global Speedup

106 4
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10° 4 S
g 3 30
£ =
4
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1024 04
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Sequence Length (N) Sequence Length (N)
Figure 4: Scalability analysis. (a) Log-log plot of computa-
tional operations vs. sequence length for global attention
O(N?) and chunked processing O(N - K). (b) Speedup factor
of chunked vs. global, reaching 47.1x at N=1,000.

3.5 Window Configuration Analysis

We explore the trade-off between window size, overlap, and consis-
tency on an 80-frame zigzag trajectory (Figure 5). Smaller windows
with larger overlaps (e.g., W8 with O4) provide more overlap re-
gions for consistency enforcement but increase total computation.
Larger windows (W32) process more frames per window but have
fewer overlap opportunities. The configuration W16, O4 achieves a
good balance: low overlap consistency error (0.0059) with moderate
complexity (112 operations versus 6,400 for global).

3.6 Gravity Coherence

We evaluate gravity direction consistency on a 60-frame circular
trajectory with varying pose noise levels. Table 4 shows that gravity
alignment loss reduces gravity misalignment by 59-60% across all
noise levels, demonstrating effective self-supervised enforcement
of this physical constraint.

Anon.

Window Config: Complexity vs. Consistency
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Figure 5: Window configuration analysis: computational
complexity versus overlap consistency error for different
window sizes (W) and overlaps (O). The dashed red line shows
global O(N?) complexity. W16, 04 provides a favorable trade-
off.

Table 4: Gravity misalignment (lower is better) with and with-
out gravity alignment loss, at varying pose noise levels. The
gravity loss reduces misalignment by 59-60% consistently.

Noise Level Without With Grav. Loss Reduction
0.02 0.0014 0.0006 60.2%
0.05 0.0019 0.0008 59.6%
0.10 0.0136 0.0055 59.4%
0.20 0.0143 0.0058 59.8%

Gravity Direction Consistency

0.014 | mmm Without Gravity Loss
| = With Gravity Loss

0.02 0.05

0.1 0.2
Pose Noise Level

Gravity Misalignment (lower = bett¢

Figure 6: Gravity direction consistency. The gravity align-
ment loss reduces misalignment by approximately 60% across
all noise levels, demonstrating effective self-supervised en-
forcement of this physical constraint without requiring
ground-truth gravity directions.

3.7 Architecture Overview

Figure 7 illustrates the complete architecture, showing how the
three tiers of physics-consistent losses provide gradient feedback
from global consistency to local window-level predictions through
the differentiable pose graph.
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Hierarchical Physics-Constrained Learning Architecture

Input:
N Images

t

Local Window Differentiable Physics
Encoder R Pose Graph —_— Consistency
) — Optimi Module
« ) S~
N
N
\\
\\
Gradient feedback AN Tier 1: Epipolar
\
Tier 2: Composition + Scale
Output: Consistent
Depth + Poses Tier 3: Gravity + Ground

Figure 7: Architecture overview. Input images are processed
in overlapping windows by a local encoder. The differen-
tiable pose graph optimizer produces globally consistent
poses. The physics consistency module enforces three tiers of
constraints, with gradients flowing back (dashed red arrow)
to improve local predictions.

4 CONCLUSION

We have presented a hierarchical framework for learning physi-
cally consistent 3D geometry at scale, addressing the fundamen-
tal tension between the robustness of learned methods and the
consistency guarantees of classical geometry. Our three-tier loss
decomposition—local epipolar, window-level compositional, and
global physical—provides complementary supervision at increasing
spatial scales, all without requiring ground-truth 3D annotations.
The differentiable pose graph optimizer enables end-to-end learn-
ing with global consistency enforcement, while chunked attention
with overlap distillation makes the approach tractable for long
sequences.

Our experiments demonstrate that each component contributes
measurably: loop closure reduces pose error by up to 20.4%, scale
anchoring reduces drift by 14.4X%, the full physics-consistent loss
achieves 40.0% lower error than a physics-unaware baseline, and
chunked processing provides up to 47.1X speedup.

Limitations. Our evaluation uses synthetic data with known
geometry; evaluation on real-world benchmarks with learned back-
bone networks (e.g., VGGT) remains important future work. The
differentiable pose graph uses a simplified first-order Jacobian ap-
proximation; full second-order methods may yield further improve-
ments. The ground-plane and gravity losses assume outdoor scenes;
adaptation to general indoor environments requires additional phys-
ical priors.

Future Work. Key directions include integration with pre-trained
geometric foundation models, extension to dynamic scenes with
moving objects, and incorporation of uncertainty estimation for
adaptive loss weighting. The hierarchical framework naturally ex-
tends to additional physical constraints (e.g., lighting consistency,
material properties) as the field progresses toward general-purpose
physically grounded scene understanding.
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