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ABSTRACT
Learning-based 3D geometry estimation methods promise scala-
bility and end-to-end optimization, yet maintaining physical con-
sistency of predicted depth and camera poses across large-scale
environments and long trajectories remains a fundamental open
problem. We present a hierarchical framework that decomposes
physically consistent geometry learning into three complemen-
tary tiers operating at increasing spatial scales: (1) local epipolar
constraints between frame pairs, (2) cross-window compositional
consistency via SE(3) closure and scale alignment, and (3) global
physical plausibility through gravity alignment and ground-plane
anchoring. Central to our approach is a differentiable pose graph
optimizer on the SE(3) manifold that distributes loop-closure cor-
rections across the full trajectory, enabling gradient feedback from
global consistency to local predictions. We further introduce chun-
ked attention with overlap consistency distillation, reducing com-
putational complexity from 𝑂 (𝑁 2) to 𝑂 (𝑁 · 𝐾) for sequences of 𝑁
frames with window size 𝐾 . Experiments on synthetic trajectories
demonstrate that loop-closure-augmented pose graph optimization
reduces translation error by up to 20.4% over sequential-only base-
lines, hierarchical scale anchoring reduces the scale coefficient of
variation by 14.4× under drift, and our full model achieves 40.0%
lower translation error than a physics-unaware baseline. For se-
quences of 1,000 frames, chunked processing achieves a 47.1× com-
putational speedup over global attention with minimal consistency
degradation.

1 INTRODUCTION
Accurate 3D geometry estimation from images—recovering depth
maps, camera poses, and dense 3D structure—is a cornerstone of
computer vision with applications spanning autonomous driving,
robotics, augmented reality, and large-scale mapping. Classical geo-
metric pipelines based on Structure-from-Motion (SfM) [9] and
Simultaneous Localization and Mapping (SLAM) [7] enforce phys-
ical consistency through explicit constraints: epipolar geometry,
bundle adjustment [12], and loop closure. However, these methods
are brittle in textureless regions, under illumination changes, and
in the presence of repetitive structures.

Learning-based methods have emerged as a compelling alter-
native, leveraging data-driven priors for robust predictions even
in challenging conditions. Foundation models such as DPT [8],
DUSt3R [6], MASt3R [2], and VGGT [14] demonstrate impressive
per-frame or per-pair accuracy. Yet as Xu et al. [15] identify in
their work on GPA-VGGT, learning physically consistent geometry
at scale remains a challenging open problem: without structured
constraints, learned predictions suffer from scale drift over long
trajectories, inconsistent geometry across viewpoints, and viola-
tion of basic physical laws such as gravity alignment and surface
non-penetration.

The fundamental tension is clear: classical methods provide con-
sistency guarantees but lack robustness; learned methods provide
robustness but lack consistency. We propose to resolve this tension
by making classical geometric constraints differentiable and embed-
ding them as structured loss functions within a learning framework.
Our key insight is that physical consistency can be decomposed
into a hierarchy of constraints at three spatial scales:

• Tier 1 (Local): Epipolar geometry between frame pairs en-
sures that predicted depth and pose are mutually consistent
within each pair.

• Tier 2 (Window): SE(3) composition closure and depth
scale consistency across overlapping processing windows
prevent drift accumulation.

• Tier 3 (Global): Gravity alignment and ground-plane con-
sistency enforce physical plausibility across the entire tra-
jectory.

This hierarchical decomposition enables a coarse-to-fine training
curriculum: local constraints stabilize early training, while global
constraints refine long-range consistency as predictions improve.
We instantiate this framework with three technical contributions:

(1) A differentiable pose graph optimizer on the SE(3) man-
ifold that takes noisy per-window relative poses and pro-
duces globally consistent absolute poses via fixed-iteration
Gauss-Newton optimization, enabling end-to-end gradient
flow from global consistency to local predictions.

(2) A hierarchical scale anchoring mechanism that grounds
metric scale using physical priors (known object sizes, grav-
ity direction, ground plane height) and propagates scale
consistency across the trajectory.

(3) Chunked attention with overlap consistency distilla-
tion that processes long sequences in overlappingwindows,
reducing complexity from 𝑂 (𝑁 2) to 𝑂 (𝑁 · 𝐾) while main-
taining inter-window consistency through bidirectional
distillation.

We validate our approach through controlled experiments on
synthetic trajectories with known ground truth, demonstrating sig-
nificant improvements in pose accuracy, scale stability, and gravity
coherence, while achieving substantial computational savings at
scale.

1.1 Related Work
Geometric 3D Reconstruction. Classical SfM [9] and SLAM [7]
pipelines enforce geometric consistency through feature matching,
epipolar geometry verification, and bundle adjustment [12]. Graph-
based optimization frameworks such as g2o [5] provide efficient
pose graph optimization with loop closure. DROID-SLAM [11]
pioneered differentiable bundle adjustment layers within a deep
network, bridging classical and learned approaches.

Learning-Based Depth and Pose Estimation. Monocular
depth estimation has progressed from supervised approaches [8]
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to self-supervised methods [3, 10]. Metric depth models such as
Metric3D v2 [4] and Depth Pro [1] address scale ambiguity for sin-
gle images but do not enforce multi-view consistency. Multi-view
methods including DUSt3R [6], MASt3R [2], and VGGT [14] predict
joint geometry from image collections using transformer archi-
tectures [13], but physical consistency across large-scale scenes
remains unsolved.

Physics-Aware Geometry Learning. GPA-VGGT [15] adapts
VGGT to large-scale localization through geometry- and physics-
aware self-supervised losses, demonstrating that naive fine-tuning
degrades consistency and motivating structured loss design. Our
work builds on this insight by providing a comprehensive hierar-
chical framework with differentiable pose graph optimization and
scalable chunked processing.

2 METHODS
2.1 Problem Formulation
Given a sequence of 𝑁 images {𝐼𝑖 }𝑁𝑖=1 with camera intrinsics K, we
seek to estimate per-frame depthmaps {𝑑𝑖 }𝑁𝑖=1 and camera-to-world
poses {T𝑖 ∈ 𝑆𝐸 (3)}𝑁𝑖=1 that are: (1) geometrically consistent—depths
and poses agree across overlapping views; (2) metrically stable—the
ratio between predicted and true scale remains constant across
the trajectory; (3) physically plausible—predictions respect gravity,
ground plane, and rigid body constraints.

2.2 Hierarchical Physics-Consistent Loss
We define a multi-tier loss L =

∑3
𝑘=1 𝜆𝑘L𝑘 with weights 𝜆𝑘 that

can be scheduled during training.
Tier 1: Epipolar Consistency. For each frame pair (𝑖, 𝑗), we

compute the essential matrix E𝑖 𝑗 = [t𝑖 𝑗 ]×R𝑖 𝑗 from the predicted
relative pose and evaluate the symmetric epipolar (Sampson) dis-
tance:

Lepi =
1
|P |

∑︁
(𝑖, 𝑗 ) ∈P

1
|Ω |

∑︁
x∈Ω

(x⊤
𝑗
E𝑖 𝑗x𝑖 )2

∥E𝑖 𝑗x𝑖 ∥2
1:2 + ∥E⊤

𝑖 𝑗
x𝑗 ∥2

1:2
(1)

where P denotes sampled frame pairs and Ω the pixel domain.
Tier 2: Composition Closure. For any cycle of relative poses

T01,T12, . . . ,T(𝑛−1)0, the composed transformation should be the
identity:

Lcomp = ∥ log(T(𝑛−1)0 ◦ · · · ◦ T01)∥2 (2)

where log is the SE(3) logarithmicmap. This provides a self-supervised
signal requiring no ground truth.

Tier 2: Scale Consistency. For overlapping frames between
adjacent windows, we penalize depth scale variation via the log-
ratio loss:

Lscale = Var
[
log

𝑑𝐴 (x)
𝑑𝐵 (x)

]
(3)

where 𝑑𝐴, 𝑑𝐵 are depth predictions from windows 𝐴 and 𝐵 for the
same pixel x.

Tier 3: Gravity Alignment. All predicted rotations should
agree on a single gravity direction in the world frame. Without

needing to know the true gravity, we penalize variance:

Lgrav = 1− 1
𝑁

𝑁∑︁
𝑖=1

(ĝ𝑖 · ḡ) , ĝ𝑖 = R⊤𝑖 gcam, ḡ = normalize

(
1
𝑁

∑︁
𝑖

ĝ𝑖

)
(4)

Tier 3: Ground Plane. Points classified as ground should be
coplanar with consistent camera height above the plane, combining
a planarity loss with a height prior.

2.3 Differentiable Pose Graph Optimizer
We formulate global pose consistency as a nonlinear least-squares
problem on the SE(3) manifold. Given initial poses {T(0)

𝑖
} and mea-

sured relative poses {Tmeas
𝑖 𝑗

} on a graph with edges E (both sequen-
tial and loop-closure), we optimize:

min
{𝜹𝑖 ∈𝔰𝔢(3) }

∑︁
(𝑖, 𝑗 ) ∈E

𝑤𝑖 𝑗




log
(
(Tmeas
𝑖 𝑗 )−1 ◦ Exp(𝜹 𝑗 )T(0)

𝑗
◦ (Exp(𝜹𝑖 )T(0)

𝑖
)−1

)


2

(5)
where𝑤𝑖 𝑗 are confidence weights and Exp/log are the SE(3) expo-
nential/logarithmic maps.

We solve this with a fixed number of Gauss-Newton iterations
(we use 15), ensuring a fixed computation graph depth for stable
backpropagation. The first pose is fixed to resolve gauge freedom.
Edge weights𝑤𝑖 𝑗 are predicted by the network, allowing it to learn
which measurements to trust.

2.4 Chunked Attention with Overlap
Distillation

To handle sequences of 𝑁 ≫ 𝐾 frames where global attention is
prohibitive, we process overlapping windows of 𝐾 frames with
stride 𝐾 − 𝑂 (overlap 𝑂). For each overlap region, a confidence-
weighted bidirectional distillation loss enforces agreement:

Loverlap =
∑︁
x

[
𝑐𝐴 (x)

(
log

𝑑𝐴

𝑑𝐹

)2
+ 𝑐𝐵 (x)

(
log

𝑑𝐵

𝑑𝐹

)2
]

(6)

where 𝑑𝐹 =
𝑐𝐴𝑑𝐴+𝑐𝐵𝑑𝐵
𝑐𝐴+𝑐𝐵 is the confidence-weighted fused depth

and 𝑐𝐴, 𝑐𝐵 are learned per-pixel confidence maps. This reduces
complexity to 𝑂

(
⌈𝑁−𝑂
𝐾−𝑂 ⌉ · 𝐾2

)
, which is 𝑂 (𝑁 · 𝐾) for 𝐾 ≪ 𝑁 .

3 RESULTS
We evaluate our framework through six controlled experiments
on synthetic trajectories with known ground truth. Synthetic data
enables exact measurement of physical consistency metrics with-
out confounds from real-world noise. All trajectories use camera
intrinsics 𝑓𝑥 = 𝑓𝑦 = 500, image resolution 256 × 256, and ray-cast
depth from planar geometry.

3.1 Pose Graph Optimization with Loop Closure
We generate a circular trajectory of 30 poses and construct a pose
graph with sequential edges plus loop-closure edges. Relative pose
measurements are corrupted with Gaussian noise at five levels
(𝜎 ∈ {0.01, 0.05, 0.10, 0.20, 0.30}). We compare three configurations:
no optimization (chained noisy poses), sequential-only pose graph
(no loop closures), and full pose graph with loop closures.

2
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Table 1: Pose graph optimization results. Translation error
(m) and rotation error (degrees) at varying noise levels. Loop
closure consistently improves over sequential-only optimiza-
tion.

No Opt. Seq. Only With Loops

𝜎 Trans. Rot. Trans. Rot. Trans. Rot.

0.01 0.40 1.41 0.40 1.41 0.34 1.18
0.05 1.09 6.80 1.09 6.80 0.94 6.27
0.10 1.52 17.68 1.52 17.68 1.32 14.02
0.20 4.19 47.38 4.19 47.38 3.34 40.64
0.30 4.62 37.67 4.62 37.67 4.21 30.63

Figure 1: Pose graph optimization comparison at varying
noise levels. (a) Translation error and (b) rotation error. Loop-
closure edges provide consistent improvement, with gains
increasing at higher noise levels where drift is most severe.

Table 1 reports translation and rotation errors. Loop-closure-
augmented optimization consistently outperforms both baselines.
At 𝜎 = 0.20, loop closure reduces translation error from 4.19m
to 3.34m (20.4% reduction) and rotation error from 47.4◦ to 40.6◦
(14.2% reduction).

3.2 Scale Drift Analysis
We evaluate scale consistency on a 100-frame forward trajectory
with varying drift rates (𝛿 ∈ {0.0, 0.001, 0.003, 0.005} per frame). The
scale coefficient of variation (CV) measures the standard deviation
of the scale factor across trajectory segments normalized by its
mean.

Table 2 shows that hierarchical scale anchoring dramatically
reduces scale drift. At drift rate 𝛿 = 0.005, the uncorrected CV is
0.1165 while the corrected CV is 0.0081, a 14.4× reduction. Even at
moderate drift (𝛿 = 0.001), anchoring reduces CV from 0.0274 to
0.0020 (13.7×).

3.3 Loss Component Ablation
We systematically ablate each loss component on a 40-frame for-
ward trajectory. Table 3 reports translation error, rotation error,
scale CV, and gravity coherence for seven configurations.

The full model achieves the lowest translation error (0.359m), a
40.0% improvement over the physics-unaware baseline (0.598m).
Removing the epipolar loss causes the largest single degradation
(0.463m, +29.0% vs. full), followed by removing composition/scale

Table 2: Scale consistency analysis. Scale coefficient of varia-
tion (CV, lower is better) and absolute drift rate at varying
per-frame drift. Hierarchical scale anchoring reduces CV by
up to 14.4×.

Uncorrected With Scale Anchoring

Drift Rate CV |Drift| CV |Drift|
0.000 0.0000 0.0000 0.0000 0.0000
0.001 0.0274 0.0099 0.0020 0.0003
0.003 0.0755 0.0273 0.0053 0.0008
0.005 0.1165 0.0421 0.0081 0.0012

Figure 2: Scale drift analysis. (a) Scale coefficient of variation
and (b) absolute scale drift rate versus per-frame drift rate.
Hierarchical scale anchoring maintains near-zero scale vari-
ation even under substantial drift.

Table 3: Loss ablation study. Each row removes one loss com-
ponent from the full model. Translation error (m), rotation
error (degrees), scale CV, and gravity coherence (higher is
better) are reported. The full model achieves the best perfor-
mance across all metrics.

Configuration Trans. (m) Rot. (◦) Scale CV Grav. Coh.

Full (Ours) 0.359 3.46 7.8e-5 0.972
No Epipolar 0.463 3.93 10.0e-5 0.971
No Composition 0.411 3.70 8.9e-5 0.971
No Gravity 0.379 3.56 8.3e-5 0.971
No Scale 0.411 3.70 8.9e-5 0.971
No Ground 0.369 3.51 8.1e-5 0.972
Baseline 0.598 4.46 12.6e-5 0.970

losses (0.411m, +14.5%). Gravity coherence is highest (0.972) with
the full model.

3.4 Scalability Analysis
Wemeasure computational complexity for global attention (𝑂 (𝑁 2))
versus chunked processing with window size 𝐾=16 and overlap
𝑂=4. Figure 4 shows that the chunked approach provides increasing
speedups as sequence length grows. At 𝑁 = 1,000 frames, chunked
processing requires only 21,248 operations versus 1,000,000 for
global attention, a 47.1× reduction. Even at 𝑁 = 200, the speedup
is 9.2× with only 17 processing windows.

3
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Figure 3: Loss ablation study showing the impact of remov-
ing each physics-consistent loss component. The full model
(leftmost bar, green) achieves the best performance across all
four metrics. The baseline without any physics losses (right-
most bar, gray) performs worst.

Figure 4: Scalability analysis. (a) Log-log plot of computa-
tional operations vs. sequence length for global attention
𝑂 (𝑁 2) and chunked processing 𝑂 (𝑁 · 𝐾). (b) Speedup factor
of chunked vs. global, reaching 47.1× at 𝑁=1,000.

3.5 Window Configuration Analysis
We explore the trade-off between window size, overlap, and consis-
tency on an 80-frame zigzag trajectory (Figure 5). Smaller windows
with larger overlaps (e.g., W8 with O4) provide more overlap re-
gions for consistency enforcement but increase total computation.
Larger windows (W32) process more frames per window but have
fewer overlap opportunities. The configuration W16, O4 achieves a
good balance: low overlap consistency error (0.0059) with moderate
complexity (112 operations versus 6,400 for global).

3.6 Gravity Coherence
We evaluate gravity direction consistency on a 60-frame circular
trajectory with varying pose noise levels. Table 4 shows that gravity
alignment loss reduces gravity misalignment by 59–60% across all
noise levels, demonstrating effective self-supervised enforcement
of this physical constraint.

Figure 5: Window configuration analysis: computational
complexity versus overlap consistency error for different
window sizes (W) and overlaps (O). The dashed red line shows
global𝑂 (𝑁 2) complexity. W16, O4 provides a favorable trade-
off.

Table 4: Gravitymisalignment (lower is better) with andwith-
out gravity alignment loss, at varying pose noise levels. The
gravity loss reduces misalignment by 59–60% consistently.

Noise Level Without With Grav. Loss Reduction

0.02 0.0014 0.0006 60.2%
0.05 0.0019 0.0008 59.6%
0.10 0.0136 0.0055 59.4%
0.20 0.0143 0.0058 59.8%

Figure 6: Gravity direction consistency. The gravity align-
ment loss reducesmisalignment by approximately 60% across
all noise levels, demonstrating effective self-supervised en-
forcement of this physical constraint without requiring
ground-truth gravity directions.

3.7 Architecture Overview
Figure 7 illustrates the complete architecture, showing how the
three tiers of physics-consistent losses provide gradient feedback
from global consistency to local window-level predictions through
the differentiable pose graph.
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Figure 7: Architecture overview. Input images are processed
in overlapping windows by a local encoder. The differen-
tiable pose graph optimizer produces globally consistent
poses. The physics consistencymodule enforces three tiers of
constraints, with gradients flowing back (dashed red arrow)
to improve local predictions.

4 CONCLUSION
We have presented a hierarchical framework for learning physi-
cally consistent 3D geometry at scale, addressing the fundamen-
tal tension between the robustness of learned methods and the
consistency guarantees of classical geometry. Our three-tier loss
decomposition—local epipolar, window-level compositional, and
global physical—provides complementary supervision at increasing
spatial scales, all without requiring ground-truth 3D annotations.
The differentiable pose graph optimizer enables end-to-end learn-
ing with global consistency enforcement, while chunked attention
with overlap distillation makes the approach tractable for long
sequences.

Our experiments demonstrate that each component contributes
measurably: loop closure reduces pose error by up to 20.4%, scale
anchoring reduces drift by 14.4×, the full physics-consistent loss
achieves 40.0% lower error than a physics-unaware baseline, and
chunked processing provides up to 47.1× speedup.

Limitations. Our evaluation uses synthetic data with known
geometry; evaluation on real-world benchmarks with learned back-
bone networks (e.g., VGGT) remains important future work. The
differentiable pose graph uses a simplified first-order Jacobian ap-
proximation; full second-order methods may yield further improve-
ments. The ground-plane and gravity losses assume outdoor scenes;
adaptation to general indoor environments requires additional phys-
ical priors.

FutureWork.Key directions include integrationwith pre-trained
geometric foundation models, extension to dynamic scenes with
moving objects, and incorporation of uncertainty estimation for
adaptive loss weighting. The hierarchical framework naturally ex-
tends to additional physical constraints (e.g., lighting consistency,
material properties) as the field progresses toward general-purpose
physically grounded scene understanding.
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