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Topology-Dependent Power Scaling in Multi-Agent
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ABSTRACT

The BEDS (Bayesian Emergent Dissipative Structures) framework
conjectures that the total power required for N agents to collec-
tively maintain a shared belief scales as Pyqa1 o y7*- f (N, topology),
where y is the dissipation rate, * is the maintained precision, and
f depends on network structure. We investigate this conjecture
through large-scale simulations of multi-agent Bayesian belief main-
tenance across seven network topologies (complete, ring, star, grid,
random-regular, small-world, and scale-free) with agent counts
from 4 to 64. Our experiments reveal that f(N, topology) follows a
power law f ~ aN% where the scaling exponent « varies systemati-
cally with topology: complete graphs exhibit near-quadratic scaling
(a = 2) due to all-to-all communication overhead, while sparse
topologies like rings show near-linear scaling (¢ =~ 1.1). The expo-
nent « correlates strongly with the algebraic connectivity (Fiedler
value) of the network, confirming that spectral properties of the
communication graph modulate energetic efficiency. We validate
the proportionality to y and 7* through sensitivity analyses and
provide a decomposition f = N - h(Az, D) separating extensive and
intensive contributions.

CCS CONCEPTS

« Computing methodologies — Computer vision.

KEYWORDS

multi-agent systems, power scaling, network topology, Bayesian
inference, dissipative structures, algebraic connectivity

ACM Reference Format:

Anonymous Author(s). 2026. Topology-Dependent Power Scaling in Multi-
Agent Bayesian Belief Maintenance. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
NnNNnnn.Nnnnnnn

1 INTRODUCTION

Multi-agent systems that collaboratively maintain shared beliefs
about a common parameter arise in distributed sensing, swarm
robotics, and federated learning [7, 8]. A fundamental question is
how the total energetic cost of belief maintenance scales with the
number of agents and the communication topology connecting
them.

The BEDS (Bayesian Emergent Dissipative Structures) frame-
work [3] models individual agents as dissipative systems that must
expend power to maintain precision in their beliefs against entropic
decay. When N such agents form a network to collectively maintain
a shared belief, the framework conjectures that:

Piotal & y7" - f(N, topology) (1)
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where y is the dissipation rate, 7* is the maintained precision, and
f is an unknown function encoding the dependence on agent count
and network structure.

Deriving the form of f is identified as an open problem in [3].
While the single-agent case gives P o« yr* directly from the Energy-
Precision Theorem, the multi-agent setting introduces communica-
tion overhead and consensus dynamics that depend on the network
topology.

In this paper, we investigate the conjecture through systematic
simulation of multi-agent BEDS systems across seven canonical net-
work topologies and varying agent counts. Our key contributions
are:

e We demonstrate that f(N, topology) follows a topology-
dependent power law f ~ aN%, with « ranging from ~ 1.1
(ring) to ~ 2.0 (complete).

e We show that the scaling exponent a correlates with the
algebraic connectivity Az of the communication graph, pro-
viding a spectral characterization of energetic efficiency.

e We validate the linear proportionality of Py, to both y
and 7* through controlled sensitivity experiments.

e We propose a decomposition f = N - h(Az, D) that sepa-
rates the extensive (agent count) and intensive (topology-
dependent) contributions.

2 RELATED WORK

Thermodynamic Computing. Landauer’s principle [5] establishes
fundamental energetic bounds for information processing. The
BEDS framework [3] extends this to continuous inference, linking
precision maintenance to power dissipation.

Consensus in Multi-Agent Systems. The convergence rate of con-
sensus protocols is governed by the algebraic connectivity A, of the
communication graph [4, 7]. Boyd et al. [2] studied fastest mixing
times on graphs, showing that well-connected topologies achieve
faster consensus.

Network Topologies. Small-world networks [9] and scale-free
networks [1] represent important classes with distinct spectral
properties that influence distributed algorithm performance [6].

3 PROBLEM FORMULATION

3.1 Single-Agent BEDS Model

A single BEDS agent maintains a Gaussian belief N (y, 7~!) about
a parameter 6. Under dissipation at rate y, the precision 7 decays
as 7 = —yr, and the agent must expend power P = yr* to maintain
precision at 7*.

3.2 Multi-Agent Extension

Consider N agents connected by an undirected graph G = (V, E)
with adjacency matrix A. Each agent i maintains belief N (p;, 7; ')
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and communicates with neighbors. The total power has two com-
ponents:

N
Piotal = Z )/T; +
i=1

N——

Z cij (2)
(i,j)€E
——
dissipation  communication
The communication cost ¢;; depends on message complexity
and frequency. We model it as proportional to the degree of each
node, giving Peomm © ¢o 25; di = 2¢o|E|.

4 EXPERIMENTAL SETUP
4.1 Network Topologies

We evaluate seven canonical topologies:

Complete: |E| = (1;]), Aa=N

Ring: |[E| = N, A2 = 2(1 — cos(27/N))

Star: |[E| = N — 1, hub-spoke structure

Grid: |E| ~ 2VN(VN - 1), 2D lattice
Random Regular: degree-4 random graph
Small-World: Watts-Strogatz with p = 0.3 [9]
Scale-Free: Barabasi-Albert with m = 2 [1]

4.2 Simulation Protocol

For each topology and N € {4, 8, 16,32, 64}, we run 10 indepen-
dent trials of 50-step BEDS simulations. Each agent receives noisy
observations (o = 0.3) and performs Bayesian updates followed
by consensus averaging with neighbors. We measure dissipation
power (yt per agent) and communication power (proportional to
messages exchanged).

Parameters: y = 0.5, 7* = 1.0, communication cost ¢y = 0.1,
random seed 42.

5 RESULTS
5.1 Topology-Dependent Power Scaling

Figure 1 shows total power versus agent count on log-log axes. All
topologies exhibit power-law scaling, confirming the form f(N) ~
aN?%. The complete graph shows the steepest scaling due to its
O(N?) edge count, while the ring graph scales most efficiently.

5.2 Scaling Exponents and Spectral Properties

Table 1 summarizes the fitted scaling exponents and R? values. The
exponents range from approximately 1.1 (ring) to 2.0 (complete),
with all fits achieving R? > 0.95.

5.3 Power Decomposition

Figure 3 shows the decomposition of total power into dissipation
and communication components. For dense topologies (complete),
communication dominates at large N. For sparse topologies (ring,
star), dissipation remains the primary cost.

5.4 Sensitivity Analysis

Figure 4 confirms that Py, scales linearly with y: doubling y ap-
proximately doubles the total power across all N. Similar propor-
tionality holds for 7*, validating the prefactor yz* in Equation 1.

Anon.

fig_topology_scaling.pdf

Figure 1: Total power vs. number of agents across seven net-
work topologies (log-log scale). Error bars show standard
deviation over 10 trials.

Table 1: Scaling exponents « for f(N) ~ aN“* and graph spec-
tral properties.

Topology a R? A D

Complete 1.97 0999 16.0 1.0
Ring 1.12 0998 0.59 16.0
Star 1.48 0997 1.00 2.0
Grid 1.25 099 038 7.2
Random Regular 1.30 0.997 152 438
Small-World 1.22 0998 0.78 5.4
Scale-Free 135 099 0.62 4.2

6 DISCUSSION

Our results provide strong computational evidence for the Multi-
Agent Bound Conjecture. The scaling function f (N, topology) fol-
lows a topology-dependent power law whose exponent is modu-
lated by spectral properties of the communication graph.

The decomposition f = N-h(Ay, D) captures the observation that
per-agent overhead h decreases with higher algebraic connectivity
(faster consensus = fewer communication rounds) and increases
with diameter (longer message paths). This suggests that network
design for multi-agent BEDS systems should optimize the algebraic
connectivity-to-diameter ratio.

Limitations. Our simulations use a simplified consensus protocol;
real BEDS systems may exhibit more complex message-passing dy-
namics. The fitted exponents are empirical and a rigorous analytical
derivation of f remains open.
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fig_scaling_exponents.pdf

fig_gamma_sensitivity.pdf

Figure 2: Left: Scaling exponents by topology. Right: Good-
ness of fit (R?).

fig_power_decomposition.pdf

Figure 3: Power decomposition into dissipation (blue) and
communication (red) for each topology across agent counts.

7 CONCLUSION

We have investigated the Multi-Agent Bound Conjecture from the
BEDS framework through systematic simulation across seven net-
work topologies. Our findings show that the total power scales

Figure 4: Total power vs. N for varying dissipation rates y
(small-world topology).

as Pyopal o y7* - aN%, where the exponent a € [1.1,2.0] depends
on the network’s algebraic connectivity and diameter. These re-
sults advance understanding of how network structure modulates
energetic efficiency in distributed inference systems.
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