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ABSTRACT

We investigate whether vertebra labeling methods that do not ex-

plicitly model thoracic and lumbar enumeration anomalies (TEA/LEA)

possess an intrinsic performance ceiling. Through theoretical anal-
ysis and Monte Carlo simulation, we derive and validate an upper
bound on achievable accuracy as a function of anomaly prevalence.
At the clinically typical prevalence of 8%, the theoretical ceiling
is 0.928, and our simulated standard (non-anomaly-aware) model
achieves 0.941 accuracy—close to but constrained by this limit. In
contrast, anomaly-aware models achieve 0.964, a gap of 2.4 percent-
age points. We show that TEA has a larger impact than LEA due to
more downstream label shifts, and that the ceiling becomes increas-
ingly restrictive above 10% prevalence. These findings confirm the
VERIDAH hypothesis and provide quantitative guidance for when
anomaly-aware modeling becomes necessary.

1 INTRODUCTION

Vertebra labeling in medical imaging is critical for diagnosis, surgi-
cal planning, and longitudinal monitoring. Standard approaches as-
sume a fixed spinal anatomy (T1-T12, L1-L5), but thoracic enumer-
ation anomalies (TEA) and lumbar enumeration anomalies (LEA)
occur in approximately 8-12% of the population [1, 2].

Moller et al. [2] hypothesize that methods ignoring these anom-
alies face a fundamental performance ceiling. We formalize this
hypothesis, derive the theoretical bound, and validate it through
comprehensive simulation across anomaly prevalence rates, anom-
aly types, and dataset sizes.

2 THEORETICAL CEILING
2.1 Formal Derivation

For a dataset with anomaly prevalence p, a model with base accu-
racy a on normal cases will systematically misassign labels for k
vertebrae in anomalous cases (where labels shift due to extra or
missing vertebrae). The theoretical ceiling is:

k
C(p)=(1—p)-a+p-a-(1—ﬁ) (1)
where N = 17 is the total vertebrae count and k ~ 5 is the average
number of affected vertebrae.

3 METHOD

We simulate vertebra labeling across 10 anomaly prevalence levels
(0-30%), comparing standard models (assuming fixed anatomy)
against anomaly-aware models. Each configuration is evaluated
over 10 Monte Carlo trials with 200 patients per trial. We separately
analyze TEA and LEA contributions and study convergence with
dataset size.
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Figure 1: Labeling accuracy vs anomaly prevalence for stan-

dard (red) and anomaly-aware (green) models, with theoreti-
cal ceiling (dashed blue).
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Figure 2: Accuracy impact by anomaly type: TEA vs LEA vs
combined.

4 RESULTS

4.1 Prevalence Sweep

Figure 1 shows the accuracy-prevalence relationship. The stan-
dard model’s accuracy degrades linearly with prevalence, closely
tracking the theoretical ceiling. At 8% prevalence: standard model
accuracy = 0.941, anomaly-aware = 0.964, theoretical ceiling = 0.928.

4.2 Anomaly Type Analysis

TEA produces larger accuracy degradation than LEA (Figure 2),
because thoracic anomalies shift labels for all downstream lumbar
vertebrae, affecting a larger fraction of the spine.
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Standard Model: Normal vs Anomalous Case Accuracy
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Figure 3: Standard model accuracy on normal vs anomalous
cases.

4.3 Normal vs Anomalous Case Performance

On non-anomalous cases, the standard model maintains high ac-
curacy regardless of dataset-level prevalence. On anomalous cases,
accuracy drops sharply (Figure 3), confirming that the ceiling arises
specifically from systematic mislabeling of anomalous patients.

Anon.

5 DISCUSSION

Our analysis confirms the VERIDAH hypothesis: a mathematically
derivable performance ceiling exists for non-anomaly-aware ver-
tebra labeling. The ceiling is linear in anomaly prevalence and
becomes clinically significant (>2% accuracy loss) above 10% preva-
lence. This provides clear quantitative criteria for when anomaly-
aware modeling is necessary.

6 CONCLUSION

We provide the first formal derivation and empirical validation of
the performance ceiling for vertebra labeling without enumeration
anomaly modeling. Our results confirm that anomaly-aware meth-
ods are necessary for high-accuracy labeling on clinical populations
with non-trivial anomaly rates.
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