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Scaling Autoregressive Model Capacity with Increasing iFSQ
Codebook Size
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ABSTRACT
We investigate whether increasing the implicit codebook size 𝐿𝑑
of the improved Finite Scalar Quantization (iFSQ) tokenizer—by
raising the bits per dimension 𝐾 in 𝐿 = 2𝐾 + 1—requires propor-
tionally scaling the capacity of the autoregressive transformer to
maintain image generation quality. Through information-theoretic
analysis and systematic scaling experiments across codebook sizes
(𝐾 ∈ {2, 3, 4, 5, 6}) and model capacities (Tiny through Large),
we establish a power-law scaling relationship: log(L) = 0.711 −
0.112 log𝑁 + 0.086 log𝑉 , achieving 𝑅2 = 0.996. The fitted capacity
scaling exponent of 0.768 demonstrates sub-linear scaling—to main-
tain constant loss as the codebook size𝑉 doubles, model parameters
need only scale by a factor of 20.768. We further show that factored
prediction heads, which decompose the 𝐿𝑑 -class softmax into 𝑑
independent 𝐿-class predictions, reduce output layer parameters
from exponential𝑂 (𝐿𝑑 ) to linear𝑂 (𝑑 ·𝐿) growth, enabling practical
scaling to large codebooks. Codebook utilization analysis reveals
that the effective vocabulary saturates near log2 (𝑉eff) ≈ 17.6 bits
regardless of nominal codebook size, explaining the sub-linear ca-
pacity requirement. These findings support the conjecture of Lin
et al. (2026) that autoregressive model capacity must grow with
codebook size, while revealing the relationship is sub-linear and
can be mitigated through architectural design.

1 INTRODUCTION
Autoregressive image generation has achieved remarkable qual-
ity by training transformer models over discrete token sequences
produced by image tokenizers [2, 10, 15]. The two-stage paradigm—
first training a vector quantization (VQ) tokenizer, then fitting an
autoregressive prior over discrete codes—decouples perceptual com-
pression from sequence modeling. A central design choice is the
codebook size of the tokenizer, which determines both reconstruc-
tion fidelity and the vocabulary over which the autoregressive
model must predict.

Improved Finite Scalar Quantization (iFSQ) [6] replaces learned
VQ codebooks with a fixed grid of quantization levels per latent di-
mension. Each dimension is quantized to 𝐿 = 2𝐾 +1 levels, where 𝐾
is the bits per dimension, yielding an implicit codebook of size
𝑉 = 𝐿𝑑 for 𝑑 latent dimensions. By construction, iFSQ avoids
codebook collapse and achieves full codebook utilization at the
per-dimension level, making it an appealing tokenizer for both
diffusion and autoregressive generation.

However, Lin et al. [6] observe that autoregressive generation
quality peaks at 𝐾 = 4 bits per dimension and degrades at higher 𝐾 ,
even as reconstruction quality continues to improve. They conjec-
ture that the fixed-capacity autoregressive model cannot effectively
predict tokens from increasingly large vocabularies. This raises a
fundamental question: how should autoregressive model capacity
scale as the iFSQ codebook grows?

We address this question through three complementary analy-
ses. First, we provide an information-theoretic framework quan-
tifying the gap between nominal codebook capacity and effective
entropy for natural images. For 𝑑 = 16 latent dimensions, the nom-
inal codebook size grows from log2 (𝑉 ) = 37.15 bits at 𝐾 = 2 to
log2 (𝑉 ) = 128.09 bits at 𝐾 = 8 (Table 1), while the factored output
layer scales linearly from 61,440 to 3,158,016 parameters. Second,
we conduct systematic scaling experiments across five codebook
sizes and four model sizes, fitting an empirical scaling law that
reveals sub-linear capacity requirements. Third, we demonstrate
that factored prediction heads—which exploit iFSQ’s per-dimension
structure—fundamentally alter the scaling relationship by reducing
output layer complexity from exponential to linear.

1.1 Related Work
Finite Scalar Quantization. FSQ [8] introduced scalar quantiza-

tion as a simpler alternative to learned VQ codebooks, eliminating
codebook collapse by construction. iFSQ [6] improves upon FSQ by
setting 𝐿 = 2𝐾 + 1 rather than 2𝐾 , enabling better reconstruction
while maintaining simplicity. The implicit codebook structure of
iFSQ naturally supports factored prediction, a property we exploit
in our analysis.

Scaling Laws for Transformers. Kaplan et al. [5] and Hoffmann et
al. [4] established power-law scaling relationships between model
size, dataset size, compute, and loss for language models. Henighan
et al. [3] extended these findings to autoregressive generative mod-
eling across modalities. Our work applies the scaling law framework
specifically to the interaction between vocabulary size and model
capacity in image generation.

VQ-VAE and Autoregressive Priors. VQ-VAE [12] and VQ-VAE-
2 [9] established the two-stage tokenize-then-generate paradigm.
VQGAN [2] combined this with adversarial training for high-fidelity
image synthesis. LlamaGen [10] demonstrated that standard lan-
guage model architectures (specifically Llama [11]) work effectively
for autoregressive image generation over VQ tokens. MaskGIT [1]
and Parti [15] explored alternative autoregressive and masked pre-
diction strategies at scale.

Emergent Capabilities and Capacity. Wei et al. [14] documented
emergent abilities that appear at specific model scales in large lan-
guage models, suggesting that some capabilities require a minimum
capacity threshold. Open-MAGVIT2 [7] explored scaling VQ-based
generation with large codebooks. Our work investigates an analo-
gous phenomenon: the capacity threshold required to effectively
exploit larger iFSQ codebooks.

2 METHODS
2.1 iFSQ Codebook Structure
The iFSQ tokenizer quantizes each of 𝑑 latent dimensions indepen-
dently to 𝐿 = 2𝐾 + 1 discrete levels, producing an implicit codebook
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of size 𝑉 = 𝐿𝑑 . For standard configurations with 𝑑 = 16, the nomi-
nal codebook size grows rapidly with 𝐾 : from 𝑉 = 516 ≈ 237.15 at
𝐾 = 2 to 𝑉 = 25716 ≈ 2128.09 at 𝐾 = 8.

Each image is represented as a sequence of 𝑆 = 𝐻 ×𝑊 spatial
tokens (e.g., 𝑆 = 256 for a 16 × 16 grid), where each token is a 𝑑-
dimensional vector of quantized values. The autoregressive model
predicts the next token given all previous tokens: 𝑃 (𝑧𝑡 | 𝑧<𝑡 , 𝑐),
where 𝑐 is an optional conditioning signal.

2.2 Information-Theoretic Analysis
The maximum information content per token is log2 (𝑉 ) = 𝑑 ·
log2 (𝐿) bits. However, for natural images, the effective conditional
entropy 𝐻 (𝑧𝑡 | 𝑧<𝑡 ) is substantially lower due to spatial corre-
lations. We analyze how the gap between nominal and effective
capacity grows with 𝐾 .

The output projection layer of a standard autoregressive trans-
former requires 𝑑model × 𝑉 parameters for joint prediction over
𝑉 classes. With 𝑑model = 768, the joint output layer alone would
require 274.98 parameters at 𝐾 = 4 (Table 1), which is clearly in-
tractable. Factored prediction decomposes this into 𝑑 independent
heads, each predicting 𝐿 classes, requiring only 𝑑model × 𝑑 × 𝐿

parameters—a reduction from exponential to linear scaling in 𝐾 .

2.3 Synthetic Data Generation
To isolate the capacity scaling question from the complexities of real
image training, we generate synthetic iFSQ-like sequences using a
controllable process. Each “image” is a sequence of 𝑆 = 64 tokens
with 𝑑 = 8 latent dimensions. Continuous latents are generated via
an AR(1) process with correlation strength 𝜌 = 0.8:

𝑥𝑡 = 𝜌 · 𝑥𝑡−1 +
√︃
1 − 𝜌2 · 𝜖𝑡 , 𝜖𝑡 ∼ N(0, 𝐼 ) (1)

and quantized to [0, 𝐿 − 1] via CDF-based scalar quantization, en-
suring uniform utilization of each dimension’s levels.

2.4 Model Architecture
Weuse a causal transformerwith pre-norm residual connections [13].
The architecture consists of factored embeddings (one embedding
table per latent dimension, projected to 𝑑model), positional embed-
dings, 𝑁𝐿 transformer blocks with multi-head causal self-attention
and GELU feed-forward layers, and a factored output head with 𝑑
independent linear projections from 𝑑model to 𝐿 classes.

We evaluate four model sizes:
• Tiny: 𝑑model = 64, 𝑁𝐿 = 2, 𝑛heads = 2
• Small: 𝑑model = 128, 𝑁𝐿 = 4, 𝑛heads = 4
• Medium: 𝑑model = 256, 𝑁𝐿 = 6, 𝑛heads = 8
• Large: 𝑑model = 384, 𝑁𝐿 = 8, 𝑛heads = 8

2.5 Scaling Law Formulation
We model the relationship between evaluation loss L, model pa-
rameters 𝑁 , and codebook size 𝑉 as:

logL = 𝑎 + 𝑏 · log𝑁 + 𝑐 · log𝑉 (2)

where 𝑏 < 0 (more parameters reduce loss) and 𝑐 > 0 (larger
codebooks increase loss). The capacity scaling exponent 𝛾 = −𝑐/𝑏
determines how model size must grow with codebook size: to main-
tain constant loss when 𝑉 doubles, parameters must scale by 2𝛾 .

Table 1: Information-theoretic analysis of iFSQ code-
book growth (𝑑 = 16, 𝑑model = 768). Data from
info_theoretic_analysis.json.

𝐾 𝐿 log2 (𝑉 ) Bits/Token Factored log2(Joint)

1 3 25.36 25.36 36,864 34.94
2 5 37.15 37.15 61,440 46.74
3 9 50.72 50.72 110,592 60.30
4 17 65.40 65.40 208,896 74.98
5 33 80.71 80.71 405,504 90.30
6 65 96.36 96.36 798,720 105.94
7 129 112.18 112.18 1,585,152 121.76
8 257 128.09 128.09 3,158,016 137.67

2.6 Experimental Protocol
All models are trained for 10 epochs on 5,000 synthetic sequences
with batch size 64, using AdamW optimization [4] with learning
rate 3×10−4, weight decay 0.01, cosine learning rate scheduling, and
gradient clipping at norm 1.0. Evaluation is performed on 1,000 held-
out sequences. The scaling sweep covers 𝐾 ∈ {2, 3, 4, 5, 6} crossed
with all four model sizes, yielding 20 factored-head experiments.
Joint-head experiments are run for 𝐾 = 2 (the only feasible setting
with 𝑑 = 8), adding 4 comparison points. A separate correlation
sensitivity experiment varies 𝜌 ∈ {0.0, 0.3, 0.5, 0.7, 0.9} for 𝐾 ∈
{3, 4, 5} with the Small model.

3 RESULTS
3.1 Information-Theoretic Analysis
Table 1 presents the information-theoretic analysis of iFSQ code-
book growth for 𝑑 = 16 latent dimensions. The nominal codebook
capacity log2 (𝑉 ) grows linearly with 𝐾 , from 25.36 bits at 𝐾 = 1 to
160.02 bits at 𝐾 = 10. The factored output head requires only 36,864
parameters at 𝐾 = 1 and scales to 12,595,200 at 𝐾 = 10—linear
growth. In contrast, the joint output head requires 234.94 parame-
ters at 𝐾 = 1 and 2169.61 at 𝐾 = 10, rendering it intractable for all
tested configurations (log2 (𝑉 ) > 20 for all 𝐾 ≥ 1 with 𝑑 = 16).

3.2 Codebook Utilization
Figure 1 presents the effective codebook utilization analysis. Despite
per-dimension utilization remaining at 1.0 across all configurations,
the effective joint vocabulary saturates dramatically. At 𝐾 = 2 with
zero correlation, 156,455 unique codes are observed out of a nominal
𝑉 = 390,625, yielding log2 (𝑉eff) = 17.26 (utilization ratio 0.929 in
log scale). By𝐾 = 4, the effective vocabulary reaches 199,995 unique
codes (log2 (𝑉eff) = 17.61), but the nominal codebook has grown
to nearly 7 × 109, dropping the utilization ratio to 0.539. At 𝐾 = 7,
the utilization ratio falls to 0.314 as the nominal codebook becomes
astronomically large while the effective vocabulary remains near
200,000 codes (log2 (𝑉eff) = 17.61). Spatial correlation has minimal
impact on utilization: at 𝐾 = 2 with 𝜌 = 0.9, the unique code count
drops only slightly to 154,861 (log2 (𝑉eff) = 17.24, utilization ratio
0.928).
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Figure 1: Effective codebook utilization. (a) Effective vocabu-
lary size saturates near log2 (𝑉eff) ≈ 17.6 regardless of nominal
codebook size. (b) Utilization ratio (log scale) drops mono-
tonically with 𝐾 , from 0.929 at 𝐾 = 2 to 0.314 at 𝐾 = 7.

Figure 2: Scaling law analysis. (a) Evaluation loss vs. model
parameters by codebook size, showing consistent power-law
scaling. (b) Predicted vs. actual loss (𝑅2 = 0.996).

3.3 Scaling Law
The fitted scaling law (Equation 2) yields:

logL = 0.711 − 0.112 · log𝑁 + 0.086 · log𝑉 (3)

with 𝑅2 = 0.996, indicating an excellent fit across all 20 factored-
head experiments. The key coefficients are:

• Parameters exponent 𝑏 = −0.112: Loss decreases as a
power law in model size with exponent −0.112.

• Codebook exponent 𝑐 = 0.086: Loss increases with code-
book size at exponent 0.086.

• Capacity scaling exponent 𝛾 = −𝑐/𝑏 = 0.768: Sub-linear
scaling—to maintain constant loss as 𝑉 doubles, model pa-
rameters need scale by 20.768 ≈ 1.70.

Figure 2 visualizes the scaling law. Panel (a) shows evaluation
loss versus model parameters for each codebook size 𝐾 , confirming
consistent power-law decay. Panel (b) shows predicted versus actual
loss values, with tight clustering around the identity line confirming
the quality of the fit.

3.4 Scaling Heatmap
Figure 3 presents the full scaling heatmap of evaluation loss across
codebook sizes and model sizes. For the smallest model (Tiny,
174,592–205,312 params), loss ranges from 1.610 at 𝐾 = 2 to 9.671
at 𝐾 = 6—a 6.0× increase. For the largest model (Large, 23,780,352–
23,964,672 params), loss ranges from 1.059 at 𝐾 = 2 to 5.325 at
𝐾 = 6—a 5.0× increase. The gap between Tiny and Large models
grows with 𝐾 : at 𝐾 = 2, the Large model achieves 34.2% lower loss

Figure 3: Evaluation loss heatmap across codebook sizes (𝐾)
and model sizes. Larger models achieve disproportionately
larger improvements at higher 𝐾 .

Figure 4: Joint vs. factored head comparison at 𝐾 = 2. (a)
Mean evaluation loss by head type. (b) Parameter efficiency:
factored heads achieve comparable loss with far fewer pa-
rameters.

than Tiny (1.059 vs. 1.610), while at 𝐾 = 6, the improvement is
44.9% (5.325 vs. 9.671).

3.5 Joint vs. Factored Heads
Figure 4 compares joint and factored prediction heads at 𝐾 = 2 (the
only tractable joint setting with 𝑑 = 8, where 𝑉 = 58 = 390,625).
The joint head achieves lower loss than the factored head for the
Tiny model (1.059 vs. 1.610, loss ratio 0.658) and the Small model
(1.059 vs. 1.250, loss ratio 0.848). However, this comes at enormous
parameter cost: the joint Tiny model has 25,167,936 parameters
versus 174,592 for factored (a 144.2× ratio), and the joint Small
model has 51,318,912 versus 1,340,416 (38.3× ratio). At Medium
and Large sizes, factored heads match joint performance (both
achieving loss 1.059), while using 13.6× and 7.3× fewer parameters,
respectively.
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Table 2: Correlation sensitivity: evaluation loss by spatial
correlation 𝜌 and codebook size𝐾 (Smallmodel,𝑑model = 128).
Data from correlation_results.json.

𝐾 𝜌 = 0.0 𝜌 = 0.3 𝜌 = 0.5 𝜌 = 0.7 𝜌 = 0.9

3 3.207 3.039 2.884 2.709 2.587
4 3.849 3.557 3.457 3.351 3.169
5 4.415 4.217 4.108 3.926 3.790

Figure 5: Training loss curves for the Small model across
codebook sizes. Higher 𝐾 consistently leads to higher loss
throughout training.

3.6 Correlation Sensitivity
Table 2 presents the effect of spatial correlation on capacity re-
quirements. Higher correlation consistently reduces evaluation
loss, confirming that spatial structure makes prediction easier. At
𝐾 = 3, increasing correlation from 𝜌 = 0.0 to 𝜌 = 0.9 reduces loss
from 3.207 to 2.587 (a 19.3% reduction). At 𝐾 = 5, the same increase
reduces loss from 4.415 to 3.790 (14.2% reduction). The stronger ef-
fect at lower𝐾 suggests that spatial correlations are more beneficial
when the per-token prediction task is already tractable.

3.7 Training Dynamics
Figure 5 shows training loss curves for the Small model (𝑑model =
128) across codebook sizes. All configurations converge smoothly,
with higher-𝐾 models starting from higher initial loss and converg-
ing to higher final loss. The gap between 𝐾 values is preserved
throughout training, suggesting the capacity bottleneck is struc-
tural rather than an optimization artifact.

4 CONCLUSION
We have established a quantitative relationship between iFSQ code-
book size and autoregressive model capacity requirements. Our key
findings are:

Sub-linear capacity scaling. The fitted power-law relationship
logL = 0.711 − 0.112 log𝑁 + 0.086 log𝑉 (𝑅2 = 0.996) yields a
capacity scaling exponent of 𝛾 = 0.768, meaning model parameters
need grow sub-linearly with codebook size. This confirms and
refines the conjecture of Lin et al. [6]: the autoregressive model
does need more capacity for larger codebooks, but the requirement
is sub-linear rather than proportional.

Effective vocabulary saturation. Codebook utilization analysis
reveals that the effective vocabulary saturates near log2 (𝑉eff) ≈ 17.6
bits regardless of nominal codebook size, with the utilization ratio
dropping from 0.929 at 𝐾 = 2 to 0.314 at 𝐾 = 7. This explains

the sub-linear scaling: the autoregressive model need only learn to
predict over the effective vocabulary, not the full nominal codebook.

Factored heads resolve the output bottleneck. Factored prediction
heads reduce output layer parameters from exponential 𝑂 (𝐿𝑑 ) to
linear 𝑂 (𝑑 · 𝐿) growth. At 𝐾 = 2 with 𝑑 = 8, factored heads match
joint head performance with 7.3× to 144.2× fewer parameters when
sufficient body capacity is available. This architectural choice is
essential for scaling to 𝐾 > 4.

Practical recommendation. For iFSQ-based autoregressive gen-
eration with 𝐾 > 4, we recommend: (1) always using factored
prediction heads; (2) scaling the transformer body sub-linearly with
codebook size (exponent ≈ 0.77); and (3) prioritizing model capac-
ity based on image complexity rather than nominal codebook size,
since effective entropy saturates.

Limitations and future work. Our experiments use synthetic data,
which may not capture all properties of real image distributions.
Validation on real ImageNet tokenizations with LlamaGen [10] is
an important next step. Additionally, investigating coupling mecha-
nisms between factored heads and mixture-of-experts architectures
could further improve capacity efficiency for very large codebooks.
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