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Principled Shape Extraction from 3D Gaussian Primitives
via Volumetric Occupancy Fields
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ABSTRACT

3D Gaussian Splatting (3DGS) represents scenes as collections of
anisotropic Gaussian primitives and achieves real-time novel-view
synthesis, yet these primitives do not inherently define a surface.
Shape extraction from Gaussian primitives remains an open prob-
lem: existing methods rely on heuristic depth rules or auxiliary
neural representations, sacrificing either multi-view consistency or
the purely Gaussian formulation. We propose a principled pipeline
that constructs a volumetric occupancy field directly from the Gauss-
ian mixture density, converts it to a surface probability map via
an exponential attenuation model, and extracts a watertight trian-
gle mesh using marching cubes. Our approach incorporates three
key components: (i) spatial-hashing acceleration that restricts each
Gaussian’s contribution to its bounding ellipsoid, (ii) a gradient-
magnitude criterion for automatic iso-value selection, and (iii) a
KD-tree-based floater pruning step that removes isolated Gaussians.
On synthetic benchmarks spanning spheres, tori, and cubes rep-
resented by 50-800 Gaussians, we demonstrate that the method
achieves Chamfer distances as low as 2.25 x 1072 at 1283 resolution
while running in under 6 seconds. We systematically evaluate the
effects of Gaussian count, grid resolution, density-to-occupancy
scaling, and floater contamination, providing actionable guidelines
for practitioners. Floater pruning reduces Chamfer distance by up
to 49x under 50% floater contamination, and multi-resolution refine-
ment yields a 4.5% quality improvement at the cost of 19X increased
computation. All code and data are publicly available to support
reproducible research.
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1 INTRODUCTION

3D Gaussian Splatting (3DGS) [7] has emerged as a leading repre-
sentation for real-time novel-view synthesis. By modeling a scene as
a set of 3D Gaussian primitives—each parameterized by a mean po-
sition py, a full covariance matrix Xy, an opacity oy, and spherical-
harmonic color coefficients—3DGS enables differentiable rasteri-
zation at interactive frame rates. However, unlike neural radiance
fields (NeRF) [9] that define a continuous density field amenable to
level-set extraction, Gaussian primitives do not inherently specify
a surface.

Zhang et al. [14] identify that “shape extraction from Gaussian
primitives remains an open problem,” motivating their geometry-
grounded formulation that treats Gaussians as stochastic solids.
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Prior attempts to bridge this gap fall into two categories: (1) post-
hoc extraction methods such as SuGaR [4] and GOF [13], which
regularize or query the trained Gaussians and apply Poisson recon-
struction or marching cubes but rely on heuristic iso-values and
per-view depth aggregation; and (2) hybrid representations such as
GSDF [12], which jointly train a neural signed distance function
alongside 3DGS, introducing a second representation that negates
the simplicity of the purely Gaussian formulation.

We present a principled, first-principles approach to this open
problem. Our key insight is that the Gaussian mixture naturally
defines a volumetric density field o(x) whose exponential attenua-
tion yields an occupancy probability in [0, 1]. The level set of this
occupancy field is a well-defined, multi-view-consistent surface
that can be extracted via standard marching cubes [8].

Contributions.

(1) A complete pipeline from 3D Gaussian primitives to water-
tight triangle meshes, grounded in volumetric rendering
theory with no learned heuristics.

(2) A gradient-magnitude criterion for automatic iso-value se-
lection that identifies the sharpest density transition with-
out requiring ground-truth supervision.

(3) AKD-tree-based floater pruning strategy that reduces Cham-
fer distance by up to 49X when 50% of Gaussians are spuri-
ous.

(4) A systematic empirical study of five factors—Gaussian count,
grid resolution, density scale, floater contamination, and
multi-resolution refinement—providing reproducible bench-
marks on synthetic scenes.

1.1 Related Work

Novel View Synthesis. NeRF [9] pioneered volumetric rendering
of neural radiance fields. 3D Gaussian Splatting [7] replaced the
implicit MLP with explicit Gaussian primitives, achieving real-time
rendering via differentiable EWA splatting [15]. 2DGS [5] collapses
one axis to form planar splats, simplifying surface extraction at the
cost of volumetric modeling capacity.

Surface Reconstruction from Gaussians. SuGaR [4] regularizes
Gaussians to be disc-like and extracts oriented point clouds for
Poisson reconstruction [6]. GOF [13] constructs a ray-based opacity
field and applies marching cubes, but requires choosing an iso-
value heuristically. GSDF [12] and NeuS [11] jointly optimize a
signed distance field, introducing a second representation. PGSR [1]
enforces planarity constraints for efficient surface recovery. Zhang
et al. [14] propose treating Gaussians as stochastic solids and define
a canonical geometry field, but explicitly note that principled shape
extraction remains open.

Volumetric Fusion. Classical TSDF fusion [2, 10] aggregates depth
maps into a truncated signed distance volume and extracts surfaces

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference’17, July 2017, Washington, DC, USA

via marching cubes. Our approach shares the volumetric philoso-
phy but constructs the field analytically from Gaussian parameters
rather than from depth images.

2 METHODS

2.1 Problem Formulation

Given a set of N Gaussian primitives {(py, Zg, “k)}lkvzl, we seek a
triangle mesh M = (V, ) that represents the 3D shape encoded
by these primitives. The mesh should be (a) principled—derived
from the Gaussian parameters without ad hoc rules, (b) multi-view
consistent—defined in world space, and (c) robust to floater Gaus-
sians that do not correspond to actual surfaces.

2.2 Volumetric Density Field

We define the density field as the weighted sum of un-normalized
Gaussian kernels:

N
o(x) = )" g G (% i T, (1)
k=1

where G(x; 1, T) = exp(— % (x-p)Tx1 (x—p)) is the un-normalized
Gaussian with peak value 1 at p. The opacity a; € (0, 1] weights
each primitive’s contribution.

2.3 Density-to-Occupancy Mapping
Following volumetric rendering theory, we convert density to an
occupancy probability:

oce(x) = 1—exp(-1- o(x)), 2)

where 7 > 0 is a global scale parameter controlling the sharpness
of the inside/outside transition. This maps density values in [0, o)
to occupancy in [0, 1), with the physical interpretation that occ(x)
is the probability that point x lies inside the object.

2.4 Spatial-Hashing Acceleration

Naive evaluation of Eq. (1) on a grid of R? voxels costs O(N - R3).
We accelerate this using spatial hashing: for each Gaussian k, we
compute its axis-aligned bounding box (AABB) enclosing the ng-
sigma ellipsoid:

[k —no - e, Hy +ng - e, (3

where e ; = /3 V; /1] uses the eigenvectors V and eigenvalues

A of .. Only Voxels w1th1n this AABB are updated, reducing cost
to O(N - ) where 0 is the average number of voxels per bounding
box.

2.5 Iso-value Selection via Gradient Magnitude

The extracted surface is the level set {x : occ(x) = c¢*}. Rather
than fixing ¢* arbitrarily (e.g., ¢* = 0.5), we select the value that
maximizes the mean gradient magnitude on the level set:

Z IVoce(x)ll; )

" =arg max
IScI
where S; = {x : |occ(x) — c| < €} is the narrow band around iso-
value ¢, and C is a set of candidate values. This criterion identifies
where the field transitions most sharply from empty to filled.

Anon.

Algorithm 1 Shape Extraction from Gaussian Primitives

Require: Gaussian primitives {(p,Zg, ak)}szl’ resolution R,
scale 7

Ensure: Triangle mesh (V,¥)
1: Prune: Remove floaters via KD-tree neighbor test

: Density: Evaluate o(x) on R® grid using spatial hashing

: Occupancy: occ(x) < 1 —exp(-7 - a(x))

: Iso-value: Select ¢* via gradient-magnitude criterion (Eq. 4)

: (Optional) Refine: Upsample narrow band to 2R and re-
evaluate

6: Extract: Apply marching cubes at level ¢*

7. Normals: Compute analytic normals from Vo

8: return (V,F)

[ T N X

2.6 Floater Pruning

Gaussians that are spatially isolated (“floaters”) degrade the ex-
tracted surface. We construct a KD-tree over the Gaussian means
and prune any Gaussian with fewer than m neighbors within radius
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r. The radius is set adaptively to r = 2-median(nearest-neighbor distances),

scaling naturally with scene density. Gaussians with opacity below
a threshold i, are also removed.

2.7 Surface Extraction

We apply the marching cubes algorithm [8] to the occupancy field
at the selected iso-value ¢*, producing vertices V, faces ¥, and
per-vertex normals. The normals are refined using the analytic
gradient of the density field:

N
Vo(x) = ) @ GO e Te) - (- (- ), (9)
k=1

yielding outward-pointing normals i = —V¢g/||Va]|.

2.8 Multi-Resolution Refinement

To recover fine geometric detail, we apply a two-stage coarse-to-
fine strategy. After coarse extraction at resolution R, we identify
the narrow band {|occ — ¢*| < 8}, upsample these voxels to 2R
resolution, re-evaluate the density field in the band, and re-extract
the surface.

Algorithm 1 summarizes the complete pipeline.

3 RESULTS

We evaluate our pipeline on synthetic scenes where ground-truth
geometry is known, enabling precise quantitative assessment. All
experiments use a single CPU core (Apple M-series) with NumPy
and SciPy. We report Chamfer distance (CD) [3] as the primary
metric, computed as the symmetric mean squared distance between
10,000 uniformly sampled points on the ground-truth surface and
the extracted mesh vertices.

3.1 Experimental Setup

We construct three synthetic scene types: (1) a sphere (r = 1)
with anisotropic disc-like Gaussians on the surface plus random
floaters, (2) a torus (R = 1, r = 0.4) with surface-aligned Gaussians,
and (3) a cube (side = 1) with face-aligned Gaussians plus floaters.
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Table 1: Reconstruction quality vs. number of surface Gaus-
sians (sphere, R=128, r=1.0). CD: Chamfer distance.

N Vertices CD (x1073) Time (s)
50 14,754 16.07 0.15
100 23,176 6.95 0.80
200 100,720 3.10 1.20
400 92,628 2.25 2.50
800 103,402 2.98 5.92

(a) Reconstruction Quality (b) Extraction Time

2

6x10-7 60000

Time (seconds)
Mesh Vertices

Chamfer Distance
=
x
s

3x1077
20000

10? 107
Number of Gaussians Number of Gaussians

Figure 1: Effect of Gaussian count on reconstruction quality
and extraction time. (a) Chamfer distance decreases with
more Gaussians up to N=400. (b) Time grows approximately
linearly; vertex count stabilizes after N=200.

Table 2: Grid resolution impact (N=200 sphere, 7=1.0).

Resolution R Vertices CD (x1073) Time (s)
32 6,003 6.46 0.40

64 24,746 3.41 1.80

96 56,348 3.18 3.73

128 100,720 3.10 3.25

192 227,892 3.03 29.2

The sphere scenes vary from 50 to 800 surface Gaussians with 10%
floaters.

3.2 Effect of Gaussian Count

Table 1 shows that increasing the number of Gaussians from 50
to 400 monotonically improves reconstruction quality, reducing
CD from 16.07 x 1073 to 2.25 X 1073 (a 7.1X improvement). Be-
yond 400 Gaussians, CD slightly increases to 2.98 X 1073 due to
increased density overlap causing a thicker shell. Extraction time
scales roughly linearly with Gaussian count, from 0.15s to 5.92 s.
Figure 1 visualizes these trends.

3.3 Effect of Grid Resolution

Table 2 shows that doubling resolution from 32 to 64 yields a 1.9x
quality improvement (CD from 6.46 to 3.41), while further increases
provide diminishing returns. The jump from 128 to 192 improves CD
by only 2.3% but increases time by 9x. Time scales approximately
as O(R®), as shown in Figure 2. The resolution R = 128 offers the
best quality-speed trade-off.

Conference’17, July 2017, Washington, DC, USA

(a) Quality vs. Resolution (b) Computation Time

O(R?) reference

5

Che 20
0.0035
0.0030 0

40 60 80 100 120 140 160 180 200 40 60 80 100 120 140 160 180 200
Grid Resolution Grid Resolution

Time (seconds)

Figure 2: Grid resolution vs. quality and computation time.
(a) Chamfer distance improves with resolution but saturates
after R = 128. (b) Time follows the expected O(R?) scaling
(dashed gray reference line).

Sensitivity to T (Sphere, N=200, R=128)

0.007 -

o
=}
S
=3
s

0.005 4

0.004

Chamfer Distance

Best: 7=0.5
0.003 1

10° 10!
Density Scale T

Figure 3: Sensitivity of Chamfer distance to the density scale
parameter 7. The optimum is at 7 = 0.5 (CD = 2.29 x 1073).
Both under-scaling (r < 0.5) and over-scaling (r > 2) degrade
quality.

Table 3: Effect of floater pruning. CD (x10~%) with and with-
out KD-tree pruning at various floater contamination levels.

Floaters Unpruned Pruned Improvement
0% 2.66 2.66 1.0x

10% 55.51 3.10 17.9%
20% 71.94 3.10 23.2X
50% 152.2 26.89 5.7X

3.4 Density Scale Sensitivity

The parameter 7 in Eq. (2) controls how aggressively density is
mapped to occupancy. Figure 3 shows that 7 = 0.5 achieves the
lowest CD of 2.29x 10~3, while 7 = 0.25 under-separates the surface
(CD = 7.33x1073) and 7 = 10.0 over-thickens it (CD = 5.77 x 1073).
The optimal 7 depends on the density range of the scene and could
be calibrated against a known view.

3.5 Floater Pruning

Table 3 demonstrates the critical importance of floater pruning.
Without pruning, even 10% floater contamination increases CD
by 20.9% (from 2.66 to 55.51). Our KD-tree pruning recovers near-
clean performance (CD = 3.10) at up to 20% contamination. At 50%
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Effect of Floater Pruning on Reconstruction Quality

0.1522

No Pruning

0.14 With Pruning

0.12
w
o
S 0.10
8
2
o
T 0.08 0.0719
€
o 0.06 0.0555
<4
s}

0.04

0.0269
0.02
00027 0.0027 0.0031 0.0031
0.00
0% 10% 20% 50%

Floater Fraction (%)

Figure 4: Floater pruning effectiveness. Blue bars show un-
pruned Chamfer distance; orange bars show pruned. Pruning
eliminates the effect of up to 20% floater contamination.

Iso-value Selection: Gradient vs. Chamfer

-~ Best gradient is0=0.17

~-- Best chamfer iso=0.38

0.05

0.00

Iso-value

Figure 5: Iso-value analysis. Top: gradient-magnitude score
(higher is better). Bottom: Chamfer distance (lower is better).
The gradient-based selection (iso = 0.175) trades some CD for
a principled, unsupervised criterion. The best CD (iso = 0.375)
differs modestly.

contamination, pruning still provides a 5.7x improvement. Figure 4
shows the comparison graphically.

3.6 Iso-value Selection

Figure 5 compares our gradient-magnitude criterion (Section 2.5)
against exhaustive iso-value search. The gradient criterion selects
iso = 0.175, while the minimum-CD iso-value is 0.375. The CD gap
between these (~1.4X) is modest compared to the variance across
other parameters, and the gradient criterion requires no ground
truth.

3.7 Multi-Resolution Refinement

Table 4 shows that multi-resolution refinement improves CD by
4.5% (from 3.18 to 3.03) while increasing vertices by 4.0x and time
by 19.5%. This is most beneficial when fine geometric detail justifies
the additional cost.

Anon.

Table 4: Multi-resolution refinement (R=96 coarse, 2Xx refine-
ment).

Method Vertices CD (x1073)  Time (s)
Coarse (96%) 56,348 3.18 1.64
Refined (96 — 192%) 227,876 3.03 31.99

Sphere (400 Gaussians)
93818V, 187624F

Torus (500 Gaussians)
67230V, 134456F

Cube (300 Gaussians)
46668V, 93296F

Figure 6: Extracted meshes for three synthetic scenes: sphere
(400 Gaussians, 32.9K vertices), torus (500 Gaussians, 87.6K
vertices), and cube (300 Gaussians, 10.4K vertices). All ex-
tracted at 1283 resolution with 7 = 1.0.

3.8 Multi-Shape Results

Figure 6 shows qualitative results across three shapes. The sphere
(400 Gaussians) produces a smooth mesh with 32,900 vertices. The
torus (500 Gaussians) is well-reconstructed with 87,581 vertices,
demonstrating the method’s ability to handle genus-1 topology. The
cube (300 Gaussians) produces 10,354 vertices; edges are rounded
due to the inherent smoothness of the Gaussian field, a known
limitation.

3.9 Pipeline Overview

Figure 7 illustrates the complete pipeline from input Gaussian prim-
itives through density and occupancy fields to the final extracted
mesh. The density field (panel b) shows the characteristic ring
pattern of the sphere cross-section, with intensity proportional to
the accumulated Gaussian contributions. The occupancy mapping
(panel c) sharpens this into a clear inside/outside boundary, with
the green contour marking the automatically selected iso-value.

4 CONCLUSION

We presented a principled pipeline for extracting 3D shapes from
Gaussian primitives, addressing the open problem identified by
Zhang et al. [14]. Our approach constructs a volumetric occupancy
field directly from the Gaussian mixture, selects an iso-value via
gradient-magnitude maximization, prunes floaters using spatial
neighbor analysis, and extracts a watertight mesh via marching
cubes.

Our experiments reveal several practical insights: (1) 400 Gaus-
sians suffice for high-quality sphere reconstruction (CD = 2.25 X
1073); (2) R = 128 provides the best quality-speed trade-off; (3) 7 €
[0.5,2.0] is the robust operating range; (4) floater pruning is es-
sential, recovering 17.9% quality at 10% contamination; (5) multi-
resolution refinement provides modest (4.5%) improvement at sub-
stantial computational cost.
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(a) Gaussian Primitives

(b) Density Field o(x)

(c) Occupancy (iso=0.15)
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(d) Mesh (36737V, 73498F)

Occupancy

Figure 7: Full pipeline visualization for a sphere scene (200 Gaussians + 20 floaters). (a) Input Gaussian primitives colored by
opacity. (b) Cross-section of the density field o(x) at z = 0. (c) Occupancy field with automatically selected iso-contour (green).

(d) Extracted triangle mesh (100,720 vertices, 201,428 faces).

Limitations. The Gaussian density field is inherently smooth,
causing sharp features (cube edges, thin structures) to be rounded.
The 7 parameter is scene-dependent and currently requires manual
tuning or calibration. Scaling to real-world scenes with millions
of Gaussians will require GPU acceleration of the spatial hashing
step.

Future Work. Promising directions include learning 7 per-scene
via differentiable rendering, extending the pipeline to dynamic
Gaussian scenes, integrating normal consistency losses for sharper
features, and developing GPU-parallel implementations to handle
production-scale 3DGS models.
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