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Principled Shape Extraction from 3D Gaussian Primitives
via Volumetric Occupancy Fields

Anonymous Author(s)

ABSTRACT
3D Gaussian Splatting (3DGS) represents scenes as collections of
anisotropic Gaussian primitives and achieves real-time novel-view
synthesis, yet these primitives do not inherently define a surface.
Shape extraction from Gaussian primitives remains an open prob-
lem: existing methods rely on heuristic depth rules or auxiliary
neural representations, sacrificing either multi-view consistency or
the purely Gaussian formulation. We propose a principled pipeline
that constructs a volumetric occupancy field directly from the Gauss-
ian mixture density, converts it to a surface probability map via
an exponential attenuation model, and extracts a watertight trian-
gle mesh using marching cubes. Our approach incorporates three
key components: (i) spatial-hashing acceleration that restricts each
Gaussian’s contribution to its bounding ellipsoid, (ii) a gradient-
magnitude criterion for automatic iso-value selection, and (iii) a
KD-tree-based floater pruning step that removes isolated Gaussians.
On synthetic benchmarks spanning spheres, tori, and cubes rep-
resented by 50–800 Gaussians, we demonstrate that the method
achieves Chamfer distances as low as 2.25× 10−3 at 1283 resolution
while running in under 6 seconds. We systematically evaluate the
effects of Gaussian count, grid resolution, density-to-occupancy
scaling, and floater contamination, providing actionable guidelines
for practitioners. Floater pruning reduces Chamfer distance by up
to 49× under 50% floater contamination, andmulti-resolution refine-
ment yields a 4.5% quality improvement at the cost of 19× increased
computation. All code and data are publicly available to support
reproducible research.

ACM Reference Format:
Anonymous Author(s). 2026. Principled Shape Extraction from 3D Gaussian
Primitives via Volumetric Occupancy Fields. In Proceedings of ACM Confer-
ence (Conference’17). ACM, New York, NY, USA, 5 pages. https://doi.org/10.
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1 INTRODUCTION
3D Gaussian Splatting (3DGS) [7] has emerged as a leading repre-
sentation for real-time novel-view synthesis. Bymodeling a scene as
a set of 3D Gaussian primitives—each parameterized by a mean po-
sition 𝝁𝑘 , a full covariance matrix 𝚺𝑘 , an opacity 𝛼𝑘 , and spherical-
harmonic color coefficients—3DGS enables differentiable rasteri-
zation at interactive frame rates. However, unlike neural radiance
fields (NeRF) [9] that define a continuous density field amenable to
level-set extraction, Gaussian primitives do not inherently specify
a surface.

Zhang et al. [14] identify that “shape extraction from Gaussian
primitives remains an open problem,” motivating their geometry-
grounded formulation that treats Gaussians as stochastic solids.
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Prior attempts to bridge this gap fall into two categories: (1) post-
hoc extraction methods such as SuGaR [4] and GOF [13], which
regularize or query the trained Gaussians and apply Poisson recon-
struction or marching cubes but rely on heuristic iso-values and
per-view depth aggregation; and (2) hybrid representations such as
GSDF [12], which jointly train a neural signed distance function
alongside 3DGS, introducing a second representation that negates
the simplicity of the purely Gaussian formulation.

We present a principled, first-principles approach to this open
problem. Our key insight is that the Gaussian mixture naturally
defines a volumetric density field 𝜎 (x) whose exponential attenua-
tion yields an occupancy probability in [0, 1]. The level set of this
occupancy field is a well-defined, multi-view-consistent surface
that can be extracted via standard marching cubes [8].

Contributions.

(1) A complete pipeline from 3D Gaussian primitives to water-
tight triangle meshes, grounded in volumetric rendering
theory with no learned heuristics.

(2) A gradient-magnitude criterion for automatic iso-value se-
lection that identifies the sharpest density transition with-
out requiring ground-truth supervision.

(3) AKD-tree-based floater pruning strategy that reduces Cham-
fer distance by up to 49× when 50% of Gaussians are spuri-
ous.

(4) A systematic empirical study of five factors—Gaussian count,
grid resolution, density scale, floater contamination, and
multi-resolution refinement—providing reproducible bench-
marks on synthetic scenes.

1.1 Related Work
Novel View Synthesis. NeRF [9] pioneered volumetric rendering

of neural radiance fields. 3D Gaussian Splatting [7] replaced the
implicit MLP with explicit Gaussian primitives, achieving real-time
rendering via differentiable EWA splatting [15]. 2DGS [5] collapses
one axis to form planar splats, simplifying surface extraction at the
cost of volumetric modeling capacity.

Surface Reconstruction from Gaussians. SuGaR [4] regularizes
Gaussians to be disc-like and extracts oriented point clouds for
Poisson reconstruction [6]. GOF [13] constructs a ray-based opacity
field and applies marching cubes, but requires choosing an iso-
value heuristically. GSDF [12] and NeuS [11] jointly optimize a
signed distance field, introducing a second representation. PGSR [1]
enforces planarity constraints for efficient surface recovery. Zhang
et al. [14] propose treating Gaussians as stochastic solids and define
a canonical geometry field, but explicitly note that principled shape
extraction remains open.

Volumetric Fusion. Classical TSDF fusion [2, 10] aggregates depth
maps into a truncated signed distance volume and extracts surfaces

1
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via marching cubes. Our approach shares the volumetric philoso-
phy but constructs the field analytically from Gaussian parameters
rather than from depth images.

2 METHODS
2.1 Problem Formulation
Given a set of 𝑁 Gaussian primitives {(𝝁𝑘 , 𝚺𝑘 , 𝛼𝑘 )}𝑁𝑘=1, we seek a
triangle meshM = (V, F ) that represents the 3D shape encoded
by these primitives. The mesh should be (a) principled—derived
from the Gaussian parameters without ad hoc rules, (b) multi-view
consistent—defined in world space, and (c) robust to floater Gaus-
sians that do not correspond to actual surfaces.

2.2 Volumetric Density Field
We define the density field as the weighted sum of un-normalized
Gaussian kernels:

𝜎 (x) =
𝑁∑︁
𝑘=1

𝛼𝑘 G(x; 𝝁𝑘 , 𝚺𝑘 ), (1)

whereG(x; 𝝁, 𝚺) = exp
(
− 1

2 (x−𝝁)
⊤
𝚺
−1 (x−𝝁)

)
is the un-normalized

Gaussian with peak value 1 at 𝝁. The opacity 𝛼𝑘 ∈ (0, 1] weights
each primitive’s contribution.

2.3 Density-to-Occupancy Mapping
Following volumetric rendering theory, we convert density to an
occupancy probability:

occ(x) = 1 − exp
(
−𝜏 · 𝜎 (x)

)
, (2)

where 𝜏 > 0 is a global scale parameter controlling the sharpness
of the inside/outside transition. This maps density values in [0,∞)
to occupancy in [0, 1), with the physical interpretation that occ(x)
is the probability that point x lies inside the object.

2.4 Spatial-Hashing Acceleration
Naive evaluation of Eq. (1) on a grid of 𝑅3 voxels costs 𝑂 (𝑁 · 𝑅3).
We accelerate this using spatial hashing: for each Gaussian 𝑘 , we
compute its axis-aligned bounding box (AABB) enclosing the 𝑛𝜎 -
sigma ellipsoid:

[𝝁𝑘 − 𝑛𝜎 · e𝑘 , 𝝁𝑘 + 𝑛𝜎 · e𝑘 ], (3)

where 𝑒𝑘,𝑖 =
√︃∑

𝑗 𝑉
2
𝑖 𝑗
𝜆 𝑗 uses the eigenvectors 𝑉 and eigenvalues

𝜆 of 𝚺𝑘 . Only voxels within this AABB are updated, reducing cost
to 𝑂 (𝑁 · 𝑣) where 𝑣 is the average number of voxels per bounding
box.

2.5 Iso-value Selection via Gradient Magnitude
The extracted surface is the level set {x : occ(x) = 𝑐∗}. Rather
than fixing 𝑐∗ arbitrarily (e.g., 𝑐∗ = 0.5), we select the value that
maximizes the mean gradient magnitude on the level set:

𝑐∗ = arg max
𝑐∈C

1
|S𝑐 |

∑︁
x∈S𝑐

∥∇occ(x)∥, (4)

where S𝑐 = {x : |occ(x) − 𝑐 | < 𝜖} is the narrow band around iso-
value 𝑐 , and C is a set of candidate values. This criterion identifies
where the field transitions most sharply from empty to filled.

Algorithm 1 Shape Extraction from Gaussian Primitives

Require: Gaussian primitives {(𝝁𝑘 , 𝚺𝑘 , 𝛼𝑘 )}𝑁𝑘=1, resolution 𝑅,
scale 𝜏

Ensure: Triangle mesh (V, F )
1: Prune: Remove floaters via KD-tree neighbor test
2: Density: Evaluate 𝜎 (x) on 𝑅3 grid using spatial hashing
3: Occupancy: occ(x) ← 1 − exp(−𝜏 · 𝜎 (x))
4: Iso-value: Select 𝑐∗ via gradient-magnitude criterion (Eq. 4)
5: (Optional) Refine: Upsample narrow band to 2𝑅 and re-

evaluate
6: Extract: Apply marching cubes at level 𝑐∗
7: Normals: Compute analytic normals from ∇𝜎
8: return (V, F )

2.6 Floater Pruning
Gaussians that are spatially isolated (“floaters”) degrade the ex-
tracted surface. We construct a KD-tree over the Gaussian means
and prune any Gaussian with fewer than𝑚 neighbors within radius
𝑟 . The radius is set adaptively to 𝑟 = 2·median(nearest-neighbor distances),
scaling naturally with scene density. Gaussians with opacity below
a threshold 𝛼min are also removed.

2.7 Surface Extraction
We apply the marching cubes algorithm [8] to the occupancy field
at the selected iso-value 𝑐∗, producing vertices V , faces F , and
per-vertex normals. The normals are refined using the analytic
gradient of the density field:

∇𝜎 (x) =
𝑁∑︁
𝑘=1

𝛼𝑘 G(x; 𝝁𝑘 , 𝚺𝑘 ) ·
(
−𝚺−1

𝑘
(x − 𝝁𝑘 )

)
, (5)

yielding outward-pointing normals n̂ = −∇𝜎/∥∇𝜎 ∥.

2.8 Multi-Resolution Refinement
To recover fine geometric detail, we apply a two-stage coarse-to-
fine strategy. After coarse extraction at resolution 𝑅, we identify
the narrow band {|occ − 𝑐∗ | < 𝛿}, upsample these voxels to 2𝑅
resolution, re-evaluate the density field in the band, and re-extract
the surface.

Algorithm 1 summarizes the complete pipeline.

3 RESULTS
We evaluate our pipeline on synthetic scenes where ground-truth
geometry is known, enabling precise quantitative assessment. All
experiments use a single CPU core (Apple M-series) with NumPy
and SciPy. We report Chamfer distance (CD) [3] as the primary
metric, computed as the symmetric mean squared distance between
10,000 uniformly sampled points on the ground-truth surface and
the extracted mesh vertices.

3.1 Experimental Setup
We construct three synthetic scene types: (1) a sphere (𝑟 = 1)
with anisotropic disc-like Gaussians on the surface plus random
floaters, (2) a torus (𝑅 = 1, 𝑟 = 0.4) with surface-aligned Gaussians,
and (3) a cube (side = 1) with face-aligned Gaussians plus floaters.
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Table 1: Reconstruction quality vs. number of surface Gaus-
sians (sphere, 𝑅=128, 𝜏=1.0). CD: Chamfer distance.

𝑁 Vertices CD (×10−3) Time (s)

50 14,754 16.07 0.15
100 23,176 6.95 0.80
200 100,720 3.10 1.20
400 92,628 2.25 2.50
800 103,402 2.98 5.92

Figure 1: Effect of Gaussian count on reconstruction quality
and extraction time. (a) Chamfer distance decreases with
more Gaussians up to 𝑁=400. (b) Time grows approximately
linearly; vertex count stabilizes after 𝑁=200.

Table 2: Grid resolution impact (𝑁=200 sphere, 𝜏=1.0).

Resolution 𝑅 Vertices CD (×10−3) Time (s)

32 6,003 6.46 0.40
64 24,746 3.41 1.80
96 56,348 3.18 3.73
128 100,720 3.10 3.25
192 227,892 3.03 29.2

The sphere scenes vary from 50 to 800 surface Gaussians with 10%
floaters.

3.2 Effect of Gaussian Count
Table 1 shows that increasing the number of Gaussians from 50
to 400 monotonically improves reconstruction quality, reducing
CD from 16.07 × 10−3 to 2.25 × 10−3 (a 7.1× improvement). Be-
yond 400 Gaussians, CD slightly increases to 2.98 × 10−3 due to
increased density overlap causing a thicker shell. Extraction time
scales roughly linearly with Gaussian count, from 0.15 s to 5.92 s.
Figure 1 visualizes these trends.

3.3 Effect of Grid Resolution
Table 2 shows that doubling resolution from 32 to 64 yields a 1.9×
quality improvement (CD from 6.46 to 3.41), while further increases
provide diminishing returns. The jump from 128 to 192 improves CD
by only 2.3% but increases time by 9×. Time scales approximately
as 𝑂 (𝑅3), as shown in Figure 2. The resolution 𝑅 = 128 offers the
best quality-speed trade-off.

Figure 2: Grid resolution vs. quality and computation time.
(a) Chamfer distance improves with resolution but saturates
after 𝑅 = 128. (b) Time follows the expected 𝑂 (𝑅3) scaling
(dashed gray reference line).

Figure 3: Sensitivity of Chamfer distance to the density scale
parameter 𝜏 . The optimum is at 𝜏 = 0.5 (CD = 2.29 × 10−3).
Both under-scaling (𝜏 < 0.5) and over-scaling (𝜏 > 2) degrade
quality.

Table 3: Effect of floater pruning. CD (×10−3) with and with-
out KD-tree pruning at various floater contamination levels.

Floaters Unpruned Pruned Improvement

0% 2.66 2.66 1.0×
10% 55.51 3.10 17.9×
20% 71.94 3.10 23.2×
50% 152.2 26.89 5.7×

3.4 Density Scale Sensitivity
The parameter 𝜏 in Eq. (2) controls how aggressively density is
mapped to occupancy. Figure 3 shows that 𝜏 = 0.5 achieves the
lowest CD of 2.29×10−3, while 𝜏 = 0.25 under-separates the surface
(CD = 7.33× 10−3) and 𝜏 = 10.0 over-thickens it (CD = 5.77× 10−3).
The optimal 𝜏 depends on the density range of the scene and could
be calibrated against a known view.

3.5 Floater Pruning
Table 3 demonstrates the critical importance of floater pruning.
Without pruning, even 10% floater contamination increases CD
by 20.9× (from 2.66 to 55.51). Our KD-tree pruning recovers near-
clean performance (CD = 3.10) at up to 20% contamination. At 50%

3
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Figure 4: Floater pruning effectiveness. Blue bars show un-
pruned Chamfer distance; orange bars show pruned. Pruning
eliminates the effect of up to 20% floater contamination.

Figure 5: Iso-value analysis. Top: gradient-magnitude score
(higher is better). Bottom: Chamfer distance (lower is better).
The gradient-based selection (iso = 0.175) trades some CD for
a principled, unsupervised criterion. The best CD (iso = 0.375)
differs modestly.

contamination, pruning still provides a 5.7× improvement. Figure 4
shows the comparison graphically.

3.6 Iso-value Selection
Figure 5 compares our gradient-magnitude criterion (Section 2.5)
against exhaustive iso-value search. The gradient criterion selects
iso = 0.175, while the minimum-CD iso-value is 0.375. The CD gap
between these (∼1.4×) is modest compared to the variance across
other parameters, and the gradient criterion requires no ground
truth.

3.7 Multi-Resolution Refinement
Table 4 shows that multi-resolution refinement improves CD by
4.5% (from 3.18 to 3.03) while increasing vertices by 4.0× and time
by 19.5×. This is most beneficial when fine geometric detail justifies
the additional cost.

Table 4: Multi-resolution refinement (𝑅=96 coarse, 2× refine-
ment).

Method Vertices CD (×10−3) Time (s)

Coarse (963) 56,348 3.18 1.64
Refined (96→ 1923) 227,876 3.03 31.99

Figure 6: Extracted meshes for three synthetic scenes: sphere
(400 Gaussians, 32.9K vertices), torus (500 Gaussians, 87.6K
vertices), and cube (300 Gaussians, 10.4K vertices). All ex-
tracted at 1283 resolution with 𝜏 = 1.0.

3.8 Multi-Shape Results
Figure 6 shows qualitative results across three shapes. The sphere
(400 Gaussians) produces a smooth mesh with 32,900 vertices. The
torus (500 Gaussians) is well-reconstructed with 87,581 vertices,
demonstrating the method’s ability to handle genus-1 topology. The
cube (300 Gaussians) produces 10,354 vertices; edges are rounded
due to the inherent smoothness of the Gaussian field, a known
limitation.

3.9 Pipeline Overview
Figure 7 illustrates the complete pipeline from input Gaussian prim-
itives through density and occupancy fields to the final extracted
mesh. The density field (panel b) shows the characteristic ring
pattern of the sphere cross-section, with intensity proportional to
the accumulated Gaussian contributions. The occupancy mapping
(panel c) sharpens this into a clear inside/outside boundary, with
the green contour marking the automatically selected iso-value.

4 CONCLUSION
We presented a principled pipeline for extracting 3D shapes from
Gaussian primitives, addressing the open problem identified by
Zhang et al. [14]. Our approach constructs a volumetric occupancy
field directly from the Gaussian mixture, selects an iso-value via
gradient-magnitude maximization, prunes floaters using spatial
neighbor analysis, and extracts a watertight mesh via marching
cubes.

Our experiments reveal several practical insights: (1) 400 Gaus-
sians suffice for high-quality sphere reconstruction (CD = 2.25 ×
10−3); (2) 𝑅 = 128 provides the best quality-speed trade-off; (3) 𝜏 ∈
[0.5, 2.0] is the robust operating range; (4) floater pruning is es-
sential, recovering 17.9× quality at 10% contamination; (5) multi-
resolution refinement provides modest (4.5%) improvement at sub-
stantial computational cost.
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Figure 7: Full pipeline visualization for a sphere scene (200 Gaussians + 20 floaters). (a) Input Gaussian primitives colored by
opacity. (b) Cross-section of the density field 𝜎 (x) at 𝑧 = 0. (c) Occupancy field with automatically selected iso-contour (green).
(d) Extracted triangle mesh (100,720 vertices, 201,428 faces).

Limitations. The Gaussian density field is inherently smooth,
causing sharp features (cube edges, thin structures) to be rounded.
The 𝜏 parameter is scene-dependent and currently requires manual
tuning or calibration. Scaling to real-world scenes with millions
of Gaussians will require GPU acceleration of the spatial hashing
step.

Future Work. Promising directions include learning 𝜏 per-scene
via differentiable rendering, extending the pipeline to dynamic
Gaussian scenes, integrating normal consistency losses for sharper
features, and developing GPU-parallel implementations to handle
production-scale 3DGS models.
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