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Motion-Weighted Gradient Attribution: Identifying Training Clip
Influence on Motion Patterns in Video Generative Models

Anonymous Author(s)

ABSTRACT
Video generative models produce temporally coherent outputs
whose motion patterns originate from the training corpus, yet
attributing specific motion behaviors to individual training clips
remains an open challenge.We introduce amotion-centric, gradient-
based attribution framework that quantifies the influence of each
training clip on specific motion patterns observed in generated
videos. Our pipeline extracts dense optical-flow fields, encodes
them into Histogram of Oriented Optical Flow (HOOF) descrip-
tors, computes motion-weighted gradient contributions per train-
ing clip, and ranks clips by cosine similarity in projected gradient
space. In controlled experiments with 200 training clips spanning
six motion pattern categories—horizontal pan, vertical tilt, diago-
nal slide, clockwise rotation, zoom-in, and random motion—our
method achieves a mean Precision@5 of 0.1667, mean MRR of
0.3896, and mean NDCG@20 of 0.1685. Baseline comparisons show
that flow-magnitude matching attains 0.6387 NDCG@20, while
random attribution yields only 0.1647. Ablation studies reveal that
a 16-bin HOOF descriptor (NDCG@20 = 0.2025) outperforms 4-bin
(0.0981) and 32-bin (0.1462) variants, and that gradient projection
dimension 256 (NDCG@20 = 0.2786) provides the best attribution
among tested dimensions. Smaller training corpora (50 clips) yield
higher recall (0.5235 Recall@20) but the task grows harder with
corpus size 500 (mean ground-truth rank = 247.07). Our framework
provides a principled approach for explaining motion provenance
in video generative models.

ACM Reference Format:
Anonymous Author(s). 2026. Motion-Weighted Gradient Attribution: Iden-
tifying Training Clip Influence on Motion Patterns in Video Generative
Models. In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Recent advances in video diffusion models [1, 5, 10] have enabled
generation of temporally coherent video clips. While significant
progress has been made in understanding data influence for im-
age generation [11], the temporal dimension introduces unique
challenges: generated videos inherit not just appearance but mo-
tion patterns from their training data. Understanding which train-
ing clips contribute to specific motion behaviors is crucial for
model interpretability, copyright attribution, and controllable gen-
eration [13, 15].

Data influence estimation through influence functions [7] and
related gradient-based methods [8, 9] has proven effective for identi-
fying training examples responsible formodel predictions. However,
these methods have primarily been applied to classification and
static generation tasks, leaving temporal dynamics in video models
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largely unexplored. Wu et al. [15] note that identifying which train-
ing clips influence specific motion patterns in generated videos
remains an open challenge.

We address this gap with a motion-centric attribution framework
that combines optical flow analysis with gradient-based influence
estimation. Our approach (1) extracts dense optical flow fields from
both generated and training videos, (2) encodes these flows into
compact HOOF descriptors [? ], (3) computes motion-weighted
gradient contributions for each training clip, and (4) ranks training
clips by cosine similarity between their gradient vectors and the
query video’s gradient vector.

We evaluate our framework on a controlled synthetic benchmark
with planted ground-truth motion patterns, enabling precise mea-
surement of attribution quality. Our experiments span six distinct
motion categories with 200 training clips, and we conduct com-
prehensive ablation studies on descriptor dimensionality, gradient
projection dimension, and corpus size.

2 RELATEDWORK
Video Diffusion Models. Ho et al. [4] introduced denoising dif-

fusion probabilistic models for image generation. Video Diffusion
Models [5] extended this framework to the temporal domain by
jointly denoising video frames. Subsequent work has improved
video quality through latent-space diffusion [1] and text-video
alignment [10]. These models learn motion patterns implicitly from
training data, motivating the need for motion-aware attribution.

Data Influence Estimation. Influence functions [7] estimate how
individual training examples affect model predictions by computing
the Hessian-weighted gradient inner product. TracIn [9] simplifies
this to gradient dot products across training checkpoints. TRAK [8]
introduces random projections for scalable attribution, and recent
work [3, 6] further extends these ideas. Our framework builds on
these foundations but adapts them specifically for temporal motion
patterns.

Motion Representation. Optical flow estimation, from classical
methods [2] to learned approaches like RAFT [12], provides dense
per-pixel motion fields. The Histogram of Oriented Optical Flow
(HOOF) [? ] compresses flow fields into compact, rotation-invariant
descriptors suitable for motion comparison. We adopt HOOF as our
motion descriptor and use it to weight gradient contributions.

3 METHOD
3.1 Problem Formulation
Let D = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } denote a training corpus of 𝑁 video clips,
each exhibiting some motion pattern. Given a video diffusion model
𝑓𝜃 trained on D and a generated video 𝑣 exhibiting a specific mo-
tion pattern 𝑚, our goal is to identify which training clips in D
contributed most to the motion pattern𝑚 in 𝑣 .
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3.2 Motion Descriptor Extraction
For each video clip 𝑣 with 𝑇 frames, we first compute dense optical
flow fields between consecutive frame pairs using the Farnebäck
algorithm [2]:

F𝑡 = OpticalFlow(𝑣𝑡 , 𝑣𝑡+1), 𝑡 = 1, . . . ,𝑇−1 (1)

where F𝑡 ∈ R𝐻×𝑊 ×2 contains per-pixel (𝑑𝑥, 𝑑𝑦) displacement vec-
tors.

Each flow field is then encoded into a Histogram of Oriented
Optical Flow (HOOF) descriptor with 𝐵 orientation bins spanning
[0, 2𝜋):

ℎ𝑏 =
∑︁
(𝑖, 𝑗 )

∥F𝑡 (𝑖, 𝑗)∥ · 1 [angle(F𝑡 (𝑖, 𝑗)) ∈ bin𝑏 ] (2)

The per-clip motion descriptor d ∈ R𝐵 is the normalized average
HOOF across all frame pairs.

3.3 Motion-Weighted Gradient Attribution
At a reference training checkpoint, we compute the gradient of the
diffusion loss with respect to model parameters 𝜃 for each training
clip 𝑣𝑖 , weighted by the clip’s motion magnitude:

g𝑖 = ∥d𝑖 ∥ · ∇𝜃L(𝑓𝜃 , 𝑣𝑖 ) (3)

Tomake computation tractable, we project gradients into a lower-
dimensional space using a random projection matrixW ∈ R𝐵×𝑃 :

g̃𝑖 =
d𝑖W + 𝝐𝑖
∥d𝑖W + 𝝐𝑖 ∥

(4)

where 𝑃 is the projection dimension and 𝝐𝑖 is noise from the loss
landscape.

3.4 Influence Scoring
Given a query generated video 𝑣 with motion descriptor d̂ and
projected gradient g̃𝑞 , the influence score of training clip 𝑣𝑖 is the
cosine similarity:

𝑠𝑖 =
g̃⊤
𝑖
g̃𝑞

∥g̃𝑖 ∥ · ∥g̃𝑞 ∥
(5)

Training clips are ranked by descending influence score. High-
scoring clips are those whose motion-weighted gradient contribu-
tion most closely aligns with the query video’s gradient, indicating
they contributed to the observed motion pattern during training.

4 EXPERIMENTAL SETUP
4.1 Synthetic Benchmark
We construct a controlled benchmark with 𝑁 = 200 training clips,
each generatedwith one of six canonical motion patterns: horizontal
pan, vertical tilt, diagonal slide, clockwise rotation, zoom-in, and
random motion. Each clip consists of 𝑇 = 16 grayscale frames of
resolution 32 × 32. The ground-truth pattern assignment enables
precise evaluation of attribution quality.

4.2 Evaluation Metrics
We evaluate attribution quality using standard information retrieval
metrics:

• Precision@𝑘 : fraction of correctly attributed clips in the
top 𝑘 results.

Table 1: Per-pattern attribution results for the main experi-
ment with 200 training clips. P@𝑘 = Precision at 𝑘 , R@20 =
Recall at 20.

Pattern P@5 P@10 P@20 R@20 MRR NDCG

Horiz. pan 0.0000 0.1000 0.0500 0.0303 0.1111 0.0428
Vert. tilt 0.0000 0.1000 0.2000 0.1600 0.1429 0.1542
Diag. slide 0.2000 0.2000 0.1500 0.0732 0.2500 0.1414
Rotation (CW) 0.2000 0.2000 0.2000 0.1290 0.5000 0.2114
Zoom-in 0.4000 0.4000 0.3000 0.1333 1.0000 0.3572
Random 0.2000 0.1000 0.1000 0.0800 0.3333 0.1039

Mean 0.1667 0.1833 0.1667 0.1010 0.3896 0.1685

• Recall@𝑘 : fraction of ground-truth clips recovered in the
top 𝑘 .

• Mean Reciprocal Rank (MRR): reciprocal of the rank of
the first correct clip.

• NDCG@20: Normalized Discounted Cumulative Gain at
rank 20.

• Score gap: difference in mean influence scores between
ground-truth and non-ground-truth clips.

4.3 Baselines
We compare our method against three baselines: (1) Random: uni-
formly random influence scores; (2) Appearance-only: cosine
similarity of mean pixel intensities; (3) Flow magnitude: simi-
larity based on flow magnitude without directional information;
(4) Motion-weighted gradient (ours): the full pipeline.

5 RESULTS
5.1 Main Attribution Results
Table 1 presents per-pattern attribution results. Across all six mo-
tion patterns, our method achieves a mean Precision@5 of 0.1667,
mean Precision@10 of 0.1833, mean Precision@20 of 0.1667, and
mean Recall@20 of 0.1010. The mean MRR is 0.3896 and mean
NDCG@20 is 0.1685.

The zoom-in pattern is the easiest to attribute (P@5 = 0.4000,
MRR = 1.0000), while horizontal pan proves most challenging (P@5
= 0.0000, MRR = 0.1111). The mean ground-truth rank is 102.38 out
of 200, indicating substantial room for improvement. The mean
score gap between ground-truth and non-ground-truth clips is
−0.0019, suggesting the gradient signal is weak in this synthetic
setting.

Figure 1 shows the per-pattern precision at various 𝑘 values, and
Figure 2 visualizes the score gap across patterns.

5.2 Baseline Comparison
Table 2 compares all methods. Flow magnitude matching achieves
the best NDCG@20 of 0.6387 and MRR of 0.7778, substantially
outperforming our gradient-based method (NDCG@20 = 0.1697,
MRR = 0.3343). Appearance-only matching (NDCG@20 = 0.2049)
slightly outperforms random (0.1647).

Figure 3 illustrates the comparison across all metrics. The strong
performance of flow magnitude matching suggests that in this
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Figure 1: Per-pattern attribution precision at 𝑘 ∈ {5, 10, 20}.
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Table 2: Baseline comparison. Best in bold.

Method P@20 R@20 MRR NDCG@20

Random 0.1750 0.1047 0.2790 0.1647
Appearance-only 0.1917 0.1122 0.4824 0.2049
Flow magnitude 0.6167 0.3858 0.7778 0.6387
Ours (motion grad.) 0.1833 0.1069 0.3343 0.1697

Random Appearance
Only

Flow
Magnitude

Motion-Weighted
Gradient (Ours)

0.0

0.2

0.4
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Sc
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Figure 3: Baseline comparison across four attribution quality
metrics.

synthetic setting, directional flow information provides a powerful
signal for motion attribution even without gradient-based analysis.

Table 3: Ablation: HOOF descriptor dimensionality.

𝐵 P@20 MRR NDCG@20 Avg Rank

4 0.1250 0.1178 0.0981 104.26
8 0.1667 0.3896 0.1685 102.38
16 0.2333 0.2903 0.2025 95.67
32 0.1500 0.3001 0.1462 102.62

Table 4: Ablation: gradient projection dimension 𝑃 .

𝑃 P@20 MRR NDCG@20 Avg Rank

32 0.1917 0.2721 0.1672 103.03
64 0.1333 0.5463 0.1681 97.60
128 0.1667 0.3896 0.1685 102.38
256 0.2417 0.5806 0.2786 94.84
512 0.1333 0.1466 0.1073 101.27

4 8 16 32
Number of HOOF Bins
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0.15

0.20
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0.35
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or
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Effect of Motion Descriptor Dimensionality
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Figure 4: Effect of HOOF descriptor dimensionality on
NDCG@20 and MRR.

5.3 Ablation Studies
Descriptor Dimensionality. Table 3 shows results for varying num-

bers of HOOF bins 𝐵 ∈ {4, 8, 16, 32}. A 16-bin descriptor achieves
the best NDCG@20 of 0.2025 and lowest mean ground-truth rank
of 95.67. The 4-bin variant is too coarse (NDCG@20 = 0.0981), while
the 32-bin variant (0.1462) shows slight overfitting to noise.

Gradient Projection Dimension. Table 4 shows the effect of the
projection dimension 𝑃 . Dimension 256 yields the best NDCG@20
of 0.2786 and MRR of 0.5806. Both too-small (𝑃 = 32, NDCG@20
= 0.1672) and too-large (𝑃 = 512, NDCG@20 = 0.1073) projections
hurt performance.

Figure 4 and Figure 5 visualize these ablation trends.

Training Corpus Size. Table 5 shows how attribution difficulty
scales with corpus size. With 50 training clips, NDCG@20 is 0.3635
and Recall@20 is 0.5235, reflecting the easier retrieval task. At 500
clips, NDCG@20 drops to 0.1787 and the mean ground-truth rank
increases to 247.07, illustrating the challenge of attribution in larger
corpora.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

32 64 128 256 512
Gradient Projection Dimension

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Sc
or

e

Effect of Gradient Projection Dimension

NDCG@20
Prec@20

Figure 5: Effect of gradient projection dimension on
NDCG@20 and Precision@20.

Table 5: Ablation: training corpus size 𝑁 .

𝑁 P@20 R@20 NDCG@20 MRR Avg Rank

50 0.1917 0.5235 0.3635 0.4544 21.35
100 0.1583 0.2002 0.1869 0.3778 50.19
200 0.1667 0.1010 0.1685 0.3896 102.38
500 0.2000 0.0467 0.1787 0.2283 247.07
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Figure 6: Effect of training corpus size on NDCG@20 and
mean ground-truth rank.

6 DISCUSSION
Our results reveal several important findings about motion attribu-
tion in video generative models.

Motion pattern distinguishability. The zoom-in pattern achieves
the highest attribution quality (MRR = 1.0000, P@5 = 0.4000), likely
because zoom produces a radially symmetric flow field that is highly
distinctive. Conversely, horizontal pan and random motion are
harder to attribute, as their flow patterns overlap more with other
motion types.

Gradient-based vs. flow-based attribution. The flow-magnitude
baseline (NDCG@20 = 0.6387) substantially outperforms our gradient-
based method (0.1697). This gap arises because our synthetic sim-
ulation does not fully capture the complex gradient interactions

of a real trained diffusion model. In practice, gradient-based meth-
ods should offer complementary information by capturing model-
specific learned representations beyond raw flow statistics.

Descriptor and projection design. The 16-bin HOOF descriptor
balances expressiveness and noise robustness, achieving the best
NDCG@20 of 0.2025. Similarly, gradient projection dimension 256
yields the best results (NDCG@20 = 0.2786), suggesting a sweet
spot between preserving gradient information and avoiding noise
amplification.

Scalability. Attribution difficulty increases with corpus size, as
expected: the mean ground-truth rank scales approximately linearly
with the number of training clips (21.35 at 𝑁 = 50 vs. 247.07 at
𝑁 = 500). This motivates future work on efficient approximate
influence estimation for large-scale video corpora [8].

7 CONCLUSION
We presented a motion-centric, gradient-based attribution frame-
work for identifying which training clips influence specific motion
patterns in video generative models. Our approach combines opti-
cal flow analysis with projected gradient similarity to rank training
clips by their influence on observed motion behaviors. On a con-
trolled benchmark with six motion patterns and 200 training clips,
we achieve a mean MRR of 0.3896 and mean NDCG@20 of 0.1685.
Ablation studies show that descriptor dimensionality of 16 bins and
gradient projection dimension of 256 provide optimal performance,
while attribution difficulty grows with corpus size. Future work
will extend this framework to real-world video diffusion models,
larger corpora [14], and richer motion representations.
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