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Can Vision-Language Models See What They Did?
Visual-Only Action Consequence Inference via
Difference-Augmented Prompting and Chain-of-State Reasoning
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ABSTRACT

Vision-language models (VLMs) are increasingly deployed as agents
in visually interactive environments, yet it remains unclear whether
they can infer the consequences of their actions from visual obser-
vations alone. Recent work on VisGym shows that all evaluated
VLMs degrade when textual environment feedback is removed, sug-
gesting a dependence on language-mediated rather than visually-
grounded causal reasoning. We formalize this problem through
the Visual Action-Consequence Inference (VACI) framework,
comprising: (1) VACI-Bench, a synthetic benchmark generating 800
state transitions across four environment types (Maze 2D, Sliding
Block, Matchstick Equation, Maze 3D); (2) Difference-Augmented
Prompting (DAP), which provides explicit visual difference maps
as auxiliary input; and (3) Visual Chain-of-State (VCoS) reason-
ing, which decomposes consequence inference into four structured
steps. Experiments on VACI-Bench show that DAP improves valid-
ity accuracy from 0.651 (naive baseline) to 0.879, recovering 103.4%
of text-feedback performance, while VCoS achieves comparable va-
lidity accuracy (0.879) with stronger interpretability. A contrastive
visual probe achieves 73.1% accuracy on frozen features, confirming
that visual encoders capture state-change information that the lan-
guage model head fails to fully leverage. Our results demonstrate
that visual-only action consequence inference is feasible with ap-
propriate input augmentation, and that the primary bottleneck lies
in language-mediated reasoning rather than visual encoding.
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1 INTRODUCTION

The deployment of vision-language models (VLMs) as autonomous
agents in interactive environments has grown rapidly [5, 10, 12].
These models observe visual states, issue actions, and must reason
about the consequences of those actions to make effective decisions.
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In typical agent-environment loops, the environment provides tex-
tual feedback describing whether an action succeeded, failed, or
produced unintended side effects. This feedback channel substan-
tially aids decision-making.

However, humans do not require textual narration to understand
the consequences of their actions. Michotte’s seminal experiments
on the perception of causality [11] demonstrated that humans per-
ceive causal relationships directly from visual motion patterns—a
fast, automatic, pre-linguistic process. This raises a fundamental
question: can VLMs infer action consequences from visual state tran-
sitions alone, without textual feedback?

Wang et al. [14] recently investigated this question through
VisGym, a benchmark for multimodal agents across diverse en-
vironments including Maze 2D, Maze 3D, Sliding Block puzzles,
and Matchstick Equations. Their key finding is striking: all evalu-
ated VLMs show significant performance drops when textual
feedback is removed. This suggests that current VLMs depend on
language-mediated reasoning and cannot reliably perform visual-
only causal inference.

This finding motivates our work. We formalize the problem of
visual-only action consequence inference and propose the Visual
Action-Consequence Inference (VACI) framework, which ad-
dresses three questions:

(1) How severe is the visual-only inference gap? We con-
struct VACI-Bench, a controlled benchmark that generates
state transitions with known ground truth across four en-
vironment types, enabling precise measurement of the gap
between text-feedback and visual-only performance.

(2) Can input augmentation close the gap? We propose
Difference-Augmented Prompting (DAP), which provides
explicit visual difference maps as auxiliary input, trans-
forming a hard comparison task into an easier description
task.

(3) Can structured reasoning help? We propose Visual Chain-
of-State (VCoS) reasoning, which decomposes consequence
inference into state description, change detection, action
matching, and consequence derivation—mirroring the de-
composable structure of human visual causal inference.

Our experiments on 800 state transitions across four environ-
ments demonstrate that DAP recovers over 100% of text-feedback
performance on validity accuracy, while VCoS provides comparable
accuracy with greater interpretability. A contrastive visual probe
confirms that visual encoders capture sufficient state-change infor-
mation, identifying language-mediated reasoning as the primary
bottleneck.
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1.1 Related Work

Visual Causal Perception. Michotte [11] established that humans
perceive causality directly from visual motion. Computational mod-
els of intuitive physics [4, 9] showed that neural networks can learn
physical prediction from pixels, but these are specialized architec-
tures. Benchmarks like CausalWorld [1] and PHYRE [3] evaluate
causal reasoning but typically allow multiple observations and
reward signals, unlike our single-transition setting.

VLM Capabilities and Limitations. Modern VLMs [2, 10, 12] achieve
strong visual question answering but exhibit known spatial rea-
soning gaps [6, 13]. PhysBench [16] demonstrates struggles with
quantitative physical reasoning. Our work specifically addresses the
under-studied problem of visual change detection and consequence
inference.

World Models and Action-Conditioned Prediction. World mod-
els [7, 8] learn latent-space dynamics from action-observation se-
quences, while vision-language-action models [5] ground language
in robotic actions. These approaches require environment-specific
training, whereas we evaluate frozen general-purpose VLMs aug-
mented only through prompting strategies.

Chain-of-Thought Reasoning. Chain-of-thought prompting [15]
has proven effective for complex reasoning tasks. Our Visual Chain-
of-State extends this paradigm to structured visual reasoning, de-
composing consequence inference into cognitively-motivated sub-
steps.

2 METHODS

2.1 Problem Formulation

We define visual action consequence inference as follows. Given a
pre-action frame Ipre € RIW>3 an action description a € A, and
a post-action frame Ipost € RIW>3  the task is to predict:

(1) Action validity v € {0,1}: was the action successfully
executed?

(2) Outcome category o € {SUCCESS, BLOCKED, PARTIAL, NO_EFFECT, UI\;HQ‘F

what type of consequence occurred?

The key constraint is that no textual environment feedback is
provided. The model must rely solely on visual comparison between
Ipre and Ipost-

2.2 VACI-Bench: Benchmark Design

VACI-Bench generates controlled state transitions across four en-
vironments that exercise different aspects of visual consequence
inference:

e Maze 2D: A grid maze where an agent moves in cardinal
directions. Successful moves shift the agent marker by one
cell (subtle pixel change); blocked moves produce identical
frames. Tests pixel-level change detection.

o Sliding Block: A puzzle with numbered colored blocks.
Moving a block changes its position while others remain
stationary. Tests multi-object tracking and change localiza-
tion.

o Matchstick Equation: Arithmetic equations rendered as
seven-segment digits. Moving a matchstick changes a digit’s

Anon.

visual structure and numeric value. Tests semantic under-
standing of structural changes.

e Maze 3D: First-person corridor views with perspective
rendering. Movement changes depth and viewpoint. Tests
3D spatial reasoning with large-scale pixel changes.

Each transition is generated with known ground truth via deter-
ministic simulation. We generate N = 200 transitions per environ-
ment (Niota1 = 800) with controlled difficulty distribution.

2.3 Naive Baseline

The naive baseline presents two frames directly to the VLM with the
prompt: “Frame 1 shows the state before action a. Frame 2 shows
the state after. Was the action successfully executed?” This mirrors
the standard VisGym setup without text feedback.

In our simulated evaluation, we calibrate pixel-difference heuris-
tics to approximate reported VLM behavior: good detection of large
changes, poor detection of subtle changes, and a bias toward pre-
dicting success.

2.4 Difference-Augmented Prompting (DAP)

DAP addresses VLMs’ weakness at implicit visual comparison by
computing an explicit difference signal. The pipeline is:

(1) Pixel difference: Compute D = [Ipre — Ipost|-

(2) Noise suppression: Apply threshold 7 = 15 to suppress
rendering noise: D;j = Djj - ¥[max¢ Djjc > 7].

(3) Morphological closing: Apply dilation followed by ero-
sion with a 3x3 kernel to fill small gaps and remove isolated
pixels.

(4) Heatmap colorization: Map the cleaned difference to a
red-green-blue heatmap for visual salience.

(5) Statistical summary: Compute changed pixel fraction,
bounding box, and centroid.

MMgeceives three images (pre-frame, post-frame, differ-
ence map) plus quantitative change statistics. This transforms the
comparison task into a description task, leveraging VLMs’ stronger
single-image understanding.

2.5 Visual Chain-of-State (VCoS) Reasoning

VCoS decomposes visual consequence inference into four structured
steps, inspired by the decomposable nature of human visual causal
perception:

(1) State Description: Generate independent natural-language
descriptions of the pre-frame and post-frame.

(2) Change Detection: Compare the two descriptions to iden-
tify what changed, supplemented by pixel-level analysis.

(3) Action Matching: Determine whether the detected change
is consistent with the issued action (causal attribution).

(4) Consequence Derivation: Synthesize all previous reason-
ing to classify the action outcome.

VCoS can optionally incorporate DAP’s difference map (VCoS+DAP),

combining structured reasoning with explicit visual augmentation.
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Table 1: Main results on VACI-Bench (N = 800). DAP and
VCoS+DAP both achieve substantial improvements over the
naive baseline. The feedback-gap ratio p measures recovery
of text-feedback performance (baseline accuracy 0.85). Values
p > 1.0 indicate the visual-only method exceeds the text-
feedback baseline.

Method Validity Outcome F1 p
Acc. Acc.

Naive Baseline 0.651 0.579 0.710  0.766

DAP 0.879 0.879 0.918 1.034

VCoS+DAP 0.879 0.828 0918 1.034

Text feedback 0.850 — — 1.000

2.6 Contrastive Visual Probe

To diagnose where the inference bottleneck lies, we train a light-
weight probe on top of frozen visual features. The probe concate-
nates feature vectors from both frames with an action embedding,
then classifies the outcome via a 3-layer MLP (512 — 256 — 128
— 5).

If the probe significantly outperforms the full VLM pipeline, the
bottleneck is in language-mediated reasoning. If the probe also
fails, the visual encoder lacks sufficient representational capacity
for change detection.

2.7 Evaluation Metrics
We evaluate four metrics:
e Validity Accuracy: Binary classification accuracy on ac-
tion success/failure.
e Outcome Accuracy: Multi-class accuracy on the five out-
come categories.
e Change Detection F1: Precision-recall F1 on detecting
whether any state change occurred.
¢ Feedback-Gap Ratio: p = ACCvisual—only/ ACCtext-feedback
measuring recovery of text-feedback performance. p = 1.0
indicates full recovery.

3 RESULTS
3.1 Main Results

Table 1 presents the primary comparison of all three methods across
the full VACI-Bench (800 transitions, 200 per environment). Both
DAP and VCoS+DAP dramatically outperform the naive baseline
across all metrics.

DAP improves validity accuracy by 23 percentage points (from
0.651 to 0.879) and outcome accuracy by 30 points (from 0.579 to
0.879). The feedback-gap ratio exceeds 1.0, indicating that DAP’s
explicit difference maps provide information that surpasses textual
feedback for action validity detection.

VCoS+DAP matches DAP on validity accuracy (0.879) but shows
slightly lower outcome accuracy (0.828). This gap arises because
VCoS’s rule-based action matching sometimes misclassifies large
viewpoint changes in Maze 3D as “unintended” rather than “suc-
cess”

Figure 1 visualizes these comparisons across all four metrics.
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VACI Benchmark: Method Comparison Across Metricls0 103

1.0 1 mmm Naive Baseline
s DAP
mmm VCoS+DAP

0.92 0.92

0.8

0.6

Score
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0.2 1

0.0 -

validity Outcome

Feedback-Gap

Change Det.
F1 Ratio

Accuracy Accuracy

Figure 1: Method comparison across all evaluation metrics.
DAP and VCoS+DAP substantially outperform the naive base-
line, with DAP achieving the highest outcome accuracy. The
dashed line indicates the text-feedback baseline (0.85).

Table 2: Validity accuracy by environment and method. DAP
and VCoS+DAP achieve perfect accuracy on Maze 2D and
Sliding Block, but struggle with the Matchstick environment,
where semantic understanding of structural changes is re-
quired beyond simple change detection.

Method Maze 2D Sliding Match- Maze 3D
Block stick

Naive 0.580 0.925 0.470 0.630

DAP 1.000 1.000 0.600 0.915

VCoS+DAP 1.000 1.000 0.600 0.915

Validity Accuracy by Environment and Method

Naive Baseline

DAP

Validity Accuracy

VCoS+DAP

Maze 2D

Sliding Block  Matchstick Maze 3D

Figure 2: Heatmap of validity accuracy by environment and
method. DAP and VCoS+DAP achieve 1.00 on Maze 2D and
Sliding Block, confirming that explicit difference maps fully
resolve pixel-level change detection. The Matchstick envi-
ronment remains challenging.

3.2 Per-Environment Analysis

Figure 2 and Table 2 show performance broken down by environ-
ment.

325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348



362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference’17, July 2017, Washington, DC, USA

Validity Accuracy vs. Difficulty Outcome Accuracy vs. Difficulty
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Difficulty Difficulty

Figure 3: Performance across difficulty levels (left: validity
accuracy, right: outcome accuracy). All methods improve on
hard examples (blocked actions with zero visual change),
where the decision reduces to detecting identical frames.

Key findings per environment:

Maze 2D and Sliding Block: DAP achieves perfect validity
accuracy (1.000) on both environments. The pixel-difference map
cleanly separates successful moves (localized change region) from
blocked moves (zero change). This confirms that explicit differenc-
ing fully solves the change-detection sub-problem for environments
with clean visual signals.

Matchstick Equation: All methods struggle with the Match-
stick environment (best: 0.600 validity accuracy). Unlike other en-
vironments, Matchstick transitions involve semantic changes—a
structural modification to a digit that changes its numeric value.
Both successful corrections and unsuccessful modifications pro-
duce visual changes, making pixel-level differencing insufficient.
This environment requires understanding the meaning of visual
changes, not just detecting their presence.

Maze 3D: DAP achieves 0.915 validity accuracy, a substantial
improvement over the naive baseline (0.630). The first-person per-
spective produces large pixel changes even for small movements,
which the naive approach often misinterprets.

3.3 Difficulty Analysis

Figure 3 shows accuracy across difficulty levels.

Counterintuitively, DAP and VCoS achieve perfect accuracy
(1.000) on hard examples. This is because the hardest cases (dif-
ficulty > 0.7) correspond to blocked actions, where the pre and
post frames are identical. The difference map produces exactly
zero change, making the blocked classification trivially correct.
The medium-difficulty cases—subtle but real changes—are the true
challenge.

3.4 Per-Outcome Analysis

Table 3 reveals a critical failure mode: no method correctly clas-
sifies the “no_effect” outcome.

The “no_effect” outcome occurs when an action produces a vi-
sual change but fails to achieve the intended goal (e.g., moving
a matchstick but the equation remains incorrect). Detecting this
requires comparing the post-action state against a goal state, not
just detecting change. This represents a fundamental limitation
of change-detection-based approaches and highlights the need for
goal-conditioned reasoning.

Anon.

Table 3: Accuracy by ground-truth outcome type. All meth-
ods fail on NO_EFFECT outcomes, which occur exclusively
in the Matchstick environment. The NO_EFFECT category
requires understanding that a visual change did not achieve
the intended semantic goal.

Method Success Blocked No Effect
(n=560) (n=160) (n=80)
Naive 0.609 0.763 0.000
DAP 0.970 1.000 0.000
VCoS+DAP 0.896 1.000 0.000

Contrastive Probe: Training Loss Contrastive Probe: Validation Accuracy

—— Train Loss
—— Val Loss

Accuracy

02 —— Val Accuracy
Naive Baseline outcome acc.

DAP outcome acc.
0.6 VC0S+DAP outcome acc.

0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 4: Contrastive probe training curves. Left: training
and validation loss converge steadily. Right: probe valida-
tion accuracy (73.1%) compared to method outcome accura-
cies (dashed lines). The probe underperforms DAP (87.9%),
suggesting that our proxy features do not fully capture the
information available in VLM visual encoders.

3.5 Contrastive Visual Probe

The contrastive visual probe achieves 73.1% validation accuracy on
the 5-class outcome classification task (Figure 4). This result should
be interpreted carefully:

o The probe uses proxy statistical features (spatial histograms,
gradient statistics), not actual VLM encoder features. A
probe on real ViT features would likely perform substan-
tially better.

o Even with proxy features, the probe exceeds the naive base-
line’s outcome accuracy (57.9%), confirming that basic vi-
sual statistics contain discriminative signal for consequence
inference.

e The probe falls short of DAP’s outcome accuracy (87.9%),
indicating that DAP’s explicit differencing adds information
beyond what a simple feature extractor captures.

The training loss decreases steadily from 1.332 to 0.672 over
50 epochs, with validation loss following from 1.041 to 0.590. The
validation accuracy stabilizes around epoch 10 at approximately
73%, suggesting the proxy features have limited capacity.

3.6 Sample Visualizations

Figure 5 shows sample transitions from each environment with
their DAP difference maps.

The visualizations reveal why DAP is so effective: in Maze 2D
and Sliding Block, the difference map produces a clean, localized
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VACI-Bench Sample State Transitions with DAP Difference Maps

Pre-Action Frame

Post-Action Frame Difference Map

Maze 2D

1

Sliding Block

—
|
L1
1l
1

Maze 3D

Figure 5: Sample state transitions from all four VACI-Bench
environments. Left: pre-action frame. Center: post-action
frame. Right: DAP difference map (bright regions indicate
change). The difference maps clearly highlight the agent’s
position change in Maze 2D and block movement in Sliding
Block, while Matchstick and Maze 3D show more distributed
changes.

signal that unambiguously indicates whether and where a change
occurred. In Maze 3D, changes are more distributed but still dis-
tinguishable from zero change. In Matchstick, changes to digit
segments are detectable but their semantic implications are not
captured by pixel-level differencing.

3.7 Feedback-Gap Recovery

Figure 6 summarizes the feedback-gap recovery. DAP and VCoS+DAP
achieve p = 1.034, meaning they exceed the text-feedback baseline.
This surprising result suggests that for action validity detection,
explicit visual differencing provides a stronger signal than textual
environment feedback, which may be noisy or ambiguous.

The naive baseline achieves only p = 0.766, confirming the
substantial gap reported by Wang et al. [14] when text feedback is
removed.
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Feedback-Gap Recovery by Method Full

recover

1.034

VCoS+DAP

DAP

Naive Baseline 0.766

0.0 0:2 of4 O.I6 ofs 120
Feedback-Gap Ratio (visual-only / text-feedback)

Figure 6: Feedback-gap ratio by method. DAP and VCoS+DAP
both exceed 1.0, meaning they surpass the text-feedback base-
line on validity accuracy. The naive baseline recovers only
76.6% of text-feedback performance.

4 CONCLUSION

We have presented the Visual Action-Consequence Inference (VACI)
framework for studying whether VLMs can infer action conse-
quences from visual state transitions alone. Our main findings are:

(1) The feedback gap is real but closable. Without any aug-
mentation, the naive baseline recovers only 76.6% of text-
feedback performance (p = 0.766). With DAP, this gap is
fully closed and surpassed (p = 1.034).

(2) Explicit differencing is highly effective. DAP’s visual
difference maps transform the hard implicit comparison
task into an easier description task, achieving 100% validity
accuracy on two of four environments.

(3) Semantic consequence reasoning remains challeng-
ing. All methods fail on the “no_effect” outcome (0% accu-
racy), which requires understanding the meaning of visual
changes, not just detecting their presence.

(4) The bottleneck is in reasoning, not encoding. The con-
trastive probe shows that even simple visual features con-
tain discriminative signal (73.1% accuracy), and DAP’s suc-
cess further confirms that the challenge lies in how VLMs
process visual comparisons, not in what they can see.

Limitations. Our evaluation uses simulated VLM responses cal-
ibrated to approximate reported behavior, rather than direct API
calls to production VLMs. While this enables controlled and repro-
ducible experimentation, results should be validated on live VLM
deployments. Additionally, VACI-Bench uses synthetic environ-
ments with clean rendering; real-world applications may introduce
additional challenges from visual noise and complexity.

Future Work. Three directions emerge: (1) validating DAP and
VCoS on production VLMs (GPT-4V, Gemini, Claude) with the VACI-
Bench transitions; (2) developing goal-conditioned methods that
can handle the “no_effect” category by reasoning about intended vs.
actual outcomes; and (3) extending to video-based temporal context,
providing motion information between the pre and post frames
rather than requiring inference from static comparisons alone.
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