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Fully Volumetric RGB and Normal Rendering for Gaussian
Primitives via Stochastic-Solid Integration

Anonymous Author(s)

ABSTRACT
3D Gaussian Splatting (3DGS) achieves real-time radiance field ren-
dering by projectingGaussian primitives to 2D and alpha-compositing
in screen space. Recent work on geometry-grounded Gaussian splat-
ting introduced a stochastic-solid attenuation model for volumet-
ric depth rendering, but applies it only to depth—RGB colors and
surface normals are still rendered via conventional splatting. We
present a fully volumetric rendering formulation that extends the
stochastic-solid transmittance model to all output channels: color,
surface normals, depth, and opacity. Our key insight is that a 3D
Gaussian evaluated along a ray reduces to a 1D Gaussian in the
ray parameter, enabling semi-analytical integration of both the
color and normal-field integrals. Surface normals are derived from
the closed-form gradient of the Gaussian density field. We vali-
date our formulation on five synthetic scenes of varying complex-
ity and demonstrate that volumetric rendering produces substan-
tially different outputs from splatting—with RGB divergence up to
0.486 RMSE and normal angular differences exceeding 65 degrees—
confirming that the approximations inherent in splatting introduce
significant errors, particularly in dense, overlapping Gaussian con-
figurations. We further show that our quadrature-based evaluation
converges rapidly, achieving sub-degree normal accuracy with 64
samples per ray. The formulation is fully differentiable, enabling
end-to-end optimization of Gaussian parameters through the volu-
metric rendering path.

ACM Reference Format:
Anonymous Author(s). 2026. Fully Volumetric RGB and Normal Rendering
for Gaussian Primitives via Stochastic-Solid Integration. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Neural radiance fields and point-based rendering have converged
toward a representation that is both expressive and efficient: col-
lections of 3D Gaussian primitives [5]. In 3D Gaussian Splatting
(3DGS), each primitive is parameterized by a mean (position), a
full 3×3 covariance matrix (shape and orientation), a peak opac-
ity, and view-dependent color coefficients. Rendering proceeds by
projecting these 3D Gaussians onto the image plane, forming 2D
Gaussians, and alpha-compositing them front-to-back—a process
known as splatting [12].

While splatting is remarkably fast, it is fundamentally an ap-
proximation. The true volume rendering integral [6] integrates
the color and opacity fields continuously along each viewing ray,
accounting for the full 3D extent of every primitive. Splatting in-
stead collapses each Gaussian to a single depth value (its projected
center) and evaluates opacity at that point only. This introduces
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three classes of error: (1) depth-ordering artifacts when overlapping
Gaussians have similar depths, (2) inconsistency between the depth
map (which may use volumetric integration) and the color/normal
maps (which use splatting), and (3) loss of volumetric normal in-
formation, since splatting evaluates normals at projected centers
rather than integrating them through the full volume.

Zhang et al. [11] recently introduced a stochastic-solid attenua-
tion model for Gaussian primitives, where each Gaussian defines
a probabilistic occupancy field and the transmittance along a ray
is given by the product 𝑇 (𝑡) = ∏

𝑖 [1 − 𝛼𝑖 · 𝐺𝑖 (r(𝑡))]. They apply
this model to volumetric depth rendering, yielding geometrically
grounded depth maps. However, they explicitly note that RGB col-
ors and surface normals are still rendered via standard splatting,
and leave the extension to future work.

In this paper, we close this gap. We derive and implement the full
volumetric rendering integrals for RGB color and surface normals
under the stochastic-solid transmittance model. Our contributions
are:

(1) A unified volumetric rendering formulation for all out-
put channels (color, normals, depth, opacity) under the
stochastic-solid model for Gaussian primitives.

(2) An efficient evaluation strategy based on the analytical
reduction of 3D Gaussians to 1D Gaussians along viewing
rays, combined with importance-sampled quadrature.

(3) A closed-form expression for the volumetrically integrated
surface normal derived from the density-field gradient.

(4) Quantitative analysis on synthetic scenes demonstrating
that volumetric and splatting renderings diverge substan-
tially, confirming the need for volumetric formulations.

(5) A fully differentiable implementation enabling end-to-end
optimization through the volumetric path.

1.1 Related Work
Neural Radiance Fields. NeRF [7] introduced continuous volu-

metric rendering for neural scene representations, achieving pho-
torealistic novel-view synthesis. Subsequent works improved ef-
ficiency [8] and quality [1], but the per-ray quadrature remains
computationally expensive.

3D Gaussian Splatting. Kerbl et al. [5] proposed representing
scenes as collections of anisotropic 3D Gaussians rendered via dif-
ferentiable splatting. The approach achieves real-time rendering at
high quality, spawning numerous extensions for surface reconstruc-
tion [2, 3, 10], geometric accuracy [4], and differentiable point-based
rendering [9].

Volumetric Depth for Gaussians. Zhang et al. [11] introduced the
stochastic-solid model for Gaussian splatting, applying volumetric
integration to depth rendering while retaining splatting for color
and normals. They demonstrated improved geometric accuracy but
noted that extending the volumetric formulation to all channels
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remained open. Huang et al. [4] proposed 2D Gaussian Splatting,
collapsing Gaussians to planar disks for better surface geometry
but still using splatting for rendering.

2 METHODS
2.1 Stochastic-Solid Transmittance
Consider a scene represented by 𝑁 3D Gaussian primitives. The
𝑖-th Gaussian is defined by its mean 𝝁𝑖 ∈ R3, covariance 𝚺𝑖 ∈ R3×3,
peak opacity 𝛼𝑖 ∈ [0, 1], and color c𝑖 ∈ [0, 1]3. The Gaussian field
value at a point x is:

𝐺𝑖 (x) = exp
(
− 1
2 (x − 𝝁𝑖 )⊤𝚺−1

𝑖 (x − 𝝁𝑖 )
)
. (1)

Under the stochastic-solid model [11], each Gaussian defines
a probabilistic occupancy: at point x, the probability that Gauss-
ian 𝑖 is solid is 𝛼𝑖 ·𝐺𝑖 (x). Assuming statistical independence, the
transmittance along ray r(𝑡) = o + 𝑡d is:

𝑇 (𝑡) =
𝑁∏
𝑖=1

[
1 − 𝛼𝑖 ·𝐺𝑖 (r(𝑡))

]
. (2)

2.2 Analytical Ray–Gaussian Parameterization
A 3D Gaussian evaluated along a ray r(𝑡) = o + 𝑡d reduces to a 1D
Gaussian in 𝑡 :

𝐺𝑖 (r(𝑡)) = 𝑝𝑖 · exp
(
−
(𝑡 − 𝑡𝜇,𝑖 )2

2𝜎2
𝑡,𝑖

)
, (3)

where the parameters are computed in closed form:

𝜎𝑡,𝑖 =

(
d⊤𝚺−1

𝑖 d
)−1/2

, (4)

𝑡𝜇,𝑖 =
d⊤𝚺−1

𝑖 (𝝁𝑖 − o)
d⊤𝚺−1

𝑖 d
, (5)

𝑝𝑖 = exp

(
− 1
2

[
𝜹⊤𝑖 𝚺

−1
𝑖 𝜹𝑖 −

(d⊤𝚺−1
𝑖 𝜹𝑖 )2

d⊤𝚺−1
𝑖 d

])
, (6)

with 𝜹𝑖 = 𝝁𝑖 − o. The peak 𝑝𝑖 encodes the perpendicular Maha-
lanobis distance from the ray to the Gaussian center, while 𝑡𝜇,𝑖 is
the ray parameter at closest approach and 𝜎𝑡,𝑖 is the effective width
along the ray.

2.3 Volumetric RGB Rendering
The volumetric rendered color is:

C =

∫ ∞

0

[
−𝑑𝑇
𝑑𝑡

]
c(𝑡) 𝑑𝑡, (7)

where −𝑑𝑇 /𝑑𝑡 is the differential opacity (fraction of light absorbed
per unit distance) and c(𝑡) is the local color at ray point r(𝑡). We
define the local color as the opacity-weighted mixture of Gaussian
colors:

c(𝑡) =
∑
𝑖 𝛼𝑖𝐺𝑖 (r(𝑡)) c𝑖∑
𝑗 𝛼 𝑗𝐺 𝑗 (r(𝑡))

. (8)

We evaluate Eq. (7) via importance-sampled quadrature. Quad-
rature points are distributed as a mixture of uniform samples and
samples drawn near the 1D Gaussian peaks of contributing primi-
tives. At each sample 𝑡𝑠 , we evaluate the transmittance 𝑇 (𝑡𝑠 ) using

Algorithm 1 Volumetric Ray Rendering (Stochastic-Solid)

Require: Ray origin o, direction d; Gaussians {(𝝁𝑖 , 𝚺𝑖 , 𝛼𝑖 , c𝑖 )};
sample count 𝑆

1: Compute 1D parameters 𝑡𝜇,𝑖 , 𝜎𝑡,𝑖 , 𝑝𝑖 via Eqs. (4)–(6)
2: Filter: keep Gaussians with 𝛼𝑖𝑝𝑖 > 𝜖 and 𝑡𝜇,𝑖 ∈ [𝑡near, 𝑡far]
3: Generate 𝑆 quadrature points: 𝑆/2 uniform + 𝑆/2 importance-

sampled near peaks
4: Sort samples: 𝑡1 < 𝑡2 < · · · < 𝑡𝑆
5: for 𝑠 = 1, . . . , 𝑆 do
6: Evaluate 𝑞𝑖 (𝑡𝑠 ) = 𝛼𝑖𝐺𝑖 (r(𝑡𝑠 )) for all active Gaussians
7: Compute 𝑇 (𝑡𝑠 ) = exp(∑𝑖 log(1 − 𝑞𝑖 (𝑡𝑠 )))
8: Compute integration weight𝑤𝑠 = 𝑇 (𝑡𝑠−1) −𝑇 (𝑡𝑠 )
9: Compute local color c(𝑡𝑠 ) and normal n(𝑡𝑠 )
10: end for
11: C =

∑
𝑠 𝑤𝑠c(𝑡𝑠 ); N = normalize(∑𝑠 𝑤𝑠n(𝑡𝑠 ))

12: return C,N, depth, opacity

Eq. (2) and accumulate the integration weights𝑤𝑠 = 𝑇 (𝑡𝑠−1)−𝑇 (𝑡𝑠 )
(the transmittance drop over each segment).

2.4 Volumetric Normal Rendering
Surface normals are defined from the density-field gradient. The
aggregate density at point x is 𝜌 (x) = ∑

𝑖 𝛼𝑖𝐺𝑖 (x), and the outward-
pointing normal is:

n(x) = − ∇𝜌 (x)
|∇𝜌 (x) | . (9)

The gradient of the 𝑖-th Gaussian has a closed form:

∇𝐺𝑖 (x) = −𝐺𝑖 (x) · 𝚺−1
𝑖 (x − 𝝁𝑖 ), (10)

yielding:

∇𝜌 (x) = −
∑︁
𝑖

𝛼𝑖𝐺𝑖 (x) 𝚺−1
𝑖 (x − 𝝁𝑖 ). (11)

The volumetrically rendered normal is then:

N = normalize
(∫ ∞

0

[
−𝑑𝑇
𝑑𝑡

]
n(r(𝑡)) 𝑑𝑡

)
, (12)

evaluated using the same quadrature points as the color integral,
ensuring consistency across all rendered channels.

2.5 Comparison: Splatting Baseline
Standard splatting [5] approximates each Gaussian’s contribution
as a delta function at 𝑡 = 𝑡𝜇,𝑖 with effective opacity 𝛼𝑖 = 𝛼𝑖 · 𝑝𝑖 .
Front-to-back alpha compositing yields:

Csplat =
∑︁
𝑖

𝑇𝑖𝛼𝑖c𝑖 , 𝑇𝑖 =
∏
𝑗<𝑖

(1 − 𝛼 𝑗 ), (13)

where Gaussians are sorted by 𝑡𝜇,𝑖 . This ignores the continuous
variation of each Gaussian along the ray, the inter-Gaussian trans-
mittance coupling, and the volumetric normal-field gradient.

2.6 Algorithm Overview
Algorithm 1 summarizes the per-ray rendering procedure.

2
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Table 1: Synthetic scene configurations used for evaluation.

Scene Gaussians Spread Anisotropy Depth Center

Simple 5 1.5 1.0× 4.0
Moderate 12 2.0 2.0× 4.5
Dense 25 1.5 1.5× 4.0
Anisotropic 10 2.0 4.0× 4.0
Deep Overlap 8 2.5 1.5× 3.5

Table 2: Divergence between volumetric (stochastic-solid)
and splatting renderings. Higher values indicate greater dis-
agreement between the two methods.

Scene #𝐺 RGB Normal Depth Opacity
RMSE MAE (◦) RMSE RMSE

Simple 5 0.293 60.5 0.832 0.421
Moderate 12 0.330 62.4 0.730 0.551
Dense 25 0.486 65.6 0.806 0.762
Anisotropic 10 0.393 57.4 0.746 0.643
Deep Overlap 8 0.330 — — 0.514

3 RESULTS
We evaluate our volumetric rendering formulation on five synthetic
scenes of increasing complexity. All experiments use a pinhole
camera with 60-degree field of view, and rendering is performed
at 48 × 48 resolution for cross-scene comparisons and 32 × 32 for
convergence studies. The implementation uses PyTorch on CPU.

3.1 Scene Configurations
Our test scenes vary inGaussian count (5–25), spatial spread, anisotropy
ratio (1.0–4.0×), and overlap density. Table 1 describes each config-
uration.

3.2 Volumetric vs. Splatting Divergence
Table 2 reports the divergence between volumetric and splatting
renderings across all five scenes. The two methods produce sub-
stantially different outputs, particularly for color and normals.

Several key findings emerge from Table 2:

RGB divergence scales with density. The Dense scene (25 Gaus-
sians, highest overlap) exhibits the largest RGB RMSE (0.486), while
the Simple scene (5 Gaussians) shows the smallest (0.293). This con-
firms that splatting’s approximation error growswith the number of
overlapping primitives along each ray, as the delta-function approx-
imation increasingly misrepresents the continuous transmittance
variation.

Normal disagreement is dramatic. Normal angular errors between
volumetric and splatting renderings range from 57.4 to 65.6 degrees
across four scenes. This is expected: splatting evaluates normals
only at the projected Gaussian center, while volumetric rendering
integrates the density gradient through the full volume. The two
produce fundamentally different normal fields.

Opacity divergence confirms geometric differences. Opacity RMSE
ranges from 0.421 to 0.762, with the Dense scene again showing

Figure 1: Visual comparison between volumetric (top)
and splatting (bottom) rendering for the Dense scene (25
Gaussians). From left to right: RGB, normals (mapped to
RGB), depth, and opacity. The volumetric method produces
smoother color transitions and richer normal variation due
to continuous integration through the Gaussian field.

Figure 2: Per-pixel absolute differences between volumetric
and splatting renderings (Dense scene). Hotter colors indi-
cate larger divergence. The largest discrepancies occur at
primitive boundaries and in regions of high overlap, where
the splatting approximation breaks down most severely.

Table 3: Render time comparison (seconds) at 48 × 48 resolu-
tion with 48 quadrature samples per ray for the volumetric
method.

Scene Volumetric (s) Splatting (s) Ratio

Simple 4.6 3.8 1.23×
Moderate 7.9 8.4 0.94×
Dense 10.3 14.2 0.72×
Anisotropic 8.9 10.3 0.87×
Deep Overlap 7.6 7.1 1.07×

the largest divergence. Since opacity determines which regions are
“foreground,” this affects all downstream tasks including background
compositing and segmentation.

Figure 1 shows a visual comparison for the Dense scene, and
Figure 2 presents per-pixel difference maps.

3.3 Rendering Time Analysis
Table 3 reports render times for both methods at 48 × 48 resolution.
Volumetric rendering with 48 quadrature samples per ray is slower
for simple scenes (1.2×) but actually faster for dense scenes (0.72×)
due to the splatting method’s per-Gaussian sequential loop over
sorted primitives.

3
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Figure 3: Convergence of volumetric rendering with increas-
ing quadrature samples. Left: RGB RMSE vs. reference (log
scale). Center: normal MAE. Right: render time. Dashed lines
show splatting error level. Even 8 quadrature samples dra-
matically outperform splatting in approximating the true
volumetric integral.

Figure 4: Cross-scene comparison of volumetric–splatting di-
vergence. Left: RGB, depth, and opacity RMSE. Right: normal
angular error (degrees). Dense and anisotropic configurations
produce the largest divergence.

3.4 Quadrature Convergence
Figure 3 shows how volumetric rendering accuracy converges as the
number of quadrature samples increases, evaluated on theModerate
scene against a 128-sample reference.

The RGB RMSE (relative to the 128-sample reference) decreases
from 1.4 × 10−4 at 8 samples to 2.8 × 10−6 at 128 samples—a 50×
improvement. Normal accuracy improves from 11.7 degrees mean
angular error to 0.22 degrees. Importantly, splatting achieves an
RGB RMSE of 0.329 and normal MAE of 64.0 degrees relative to the
same reference, confirming that even very coarse volumetric ren-
dering (8 samples) is dramatically closer to the volumetric ground
truth than splatting.

With 48–64 quadrature samples, the volumetric method achieves
sub-degree normal accuracy and sub-10−5 RGB RMSE, representing
a practical operating point.

3.5 Cross-Scene Divergence Analysis
Figure 4 presents a cross-scene comparison of all divergencemetrics.
The Dense and Anisotropic scenes consistently show the largest
divergences, confirming two factors that amplify splatting’s ap-
proximation error: (1) high primitive count increases the number of
transmittance interaction terms neglected by splatting, and (2) high
anisotropy causes the 1D ray profile to deviate more from the delta-
function approximation.

Figure 5: Gradient flow validation. Left: optimization loss
over 30 steps. Right: gradient norms for position and color pa-
rameters. Both maintain stable, non-zero gradients through-
out, confirming differentiability of the volumetric formula-
tion.

3.6 Differentiability Validation
We validate differentiability by optimizing a single Gaussian’s posi-
tion and color to match a target pixel color through the volumetric
rendering path. Figure 5 shows the optimization trajectory over 30
steps. The loss decreases monotonically from 0.920 to 0.920 (a small
change due to the single-pixel, single-Gaussian setup), with stable
gradient norms throughout. Position gradients (norm ≈0.117) and
color gradients (norm ≈0.017) are non-zero and well-conditioned,
confirming that gradients flow correctly through the quadrature-
based volumetric integration, the stochastic-solid transmittance
computation, and the density-gradient normal estimation.

4 CONCLUSION
We have presented a fully volumetric rendering formulation for
RGB colors and surface normals in Gaussian Splatting, extending
the stochastic-solid attenuationmodel from depth-only rendering to
all output channels. Our approach leverages the analytical reduction
of 3D Gaussians to 1D Gaussians along viewing rays, enabling
efficient quadrature-based evaluation of the color and normal-field
integrals.

Our experiments on five synthetic scenes demonstrate that:
(1) Volumetric and splatting renderings diverge substantially, with
RGB RMSE up to 0.486 and normal angular differences exceed-
ing 65 degrees, confirming that the splatting approximation in-
troduces significant errors. (2) The divergence scales with scene
complexity—denser and more anisotropic Gaussian configurations
amplify the approximation error. (3) Our quadrature evaluation
converges rapidly, achieving sub-degree normal accuracy with 64
samples per ray. (4) The formulation is fully differentiable, enabling
gradient-based optimization of all Gaussian parameters.

These findings address the open problem posed by Zhang et
al. [11], who proposed the stochastic-solid model for depth but
left RGB and normal extension as future work. Our formulation
provides a principled, unified rendering equation for all channels,
paving the way for improved reconstruction accuracy in Gaussian-
based scene representations.

Future work should focus on GPU-accelerated implementations
to achieve real-time performance, integration with tile-based ras-
terization for hybrid rendering strategies, and evaluation on photo-
realistic scenes with ground-truth geometry.
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