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ABSTRACT

As organizations increasingly deploy Al assistants across profes-
sional domains, a critical question emerges: does Al assistance
erode the human skills required to supervise automated outputs?
We formalize this question through a dynamical systems model that
couples skill evolution, metacognitive calibration, and endogenous
Al reliance. Through computational experiments across four profes-
sional domains (software engineering, medicine, finance, and avia-
tion), we identify deskilling traps—parameter regimes where work-
ers lose supervisory competence and simultaneously lose aware-
ness of their incompetence, making self-correction impossible. Our
simulations reveal three key findings: (1) novice workers in high-
reliability Al domains (aviation, medicine) are most vulnerable,
with all experience levels in aviation entering deskilling traps; (2)
a reliability paradox exists wherein higher Al reliability increases
deskilling risk by reducing the error signals necessary for skill main-
tenance, with a critical threshold at approximately 0.938 reliability;
and (3) scaffolded autonomy—where Al progressively reduces its
assistance as worker skill grows—is the most effective intervention,
raising final skill from 0.048 to 0.983 while reducing cumulative
harm by 87.6%. We further document a stark generational asym-
metry: workers who developed skills before Al adoption retain
substantially higher supervisory capacity than those who entered
the profession with AI from the start. These results have direct pol-
icy implications for organizational Al deployment, training design,
and regulatory oversight in safety-critical domains.

CCS CONCEPTS

« Human-centered computing — Human computer inter-
action (HCI); - Computing methodologies — Modeling and
simulation.

KEYWORDS

Al assistance, deskilling, human oversight, automation, skill decay,
supervisory control

1 INTRODUCTION

The rapid adoption of Al assistants across professional domains has
produced measurable productivity gains [5, 15]. Software engineers
using code generation tools complete tasks faster [15], knowledge
workers with Al support produce higher-quality outputs [7], and
medical professionals using diagnostic Al achieve greater accuracy
on routine cases [5]. Yet this performance improvement comes with
an underexamined cost: the potential erosion of the human skills
required to supervise the very systems providing the assistance.
Shen et al. [16] identify this tension as a central open problem:
“Although more workers rely on Al to improve their productivity, it
is unclear whether the use of Al assistance in the workplace might
hinder core understanding of concepts or prevent the development
of skills necessary to supervise automated tasks.” This problem

is especially acute in safety-critical domains—aviation, medicine,
nuclear operations—where human oversight of automated systems
is not merely desirable but legally and ethically mandated.

The concern is not new. Bainbridge’s seminal “ironies of au-
tomation” [3] observed that automation eliminates the very tasks
through which operators develop and maintain the skills needed
to intervene when automation fails. Parasuraman and Riley [14]
documented patterns of misuse, disuse, and abuse of automation
arising from miscalibrated trust. Endsley [9] synthesized decades
of human-automation interaction research, emphasizing that situa-
tion awareness degrades when humans become passive monitors
rather than active controllers.

However, the current wave of generative Al introduces qualita-
tively new dynamics. Unlike traditional automation, which executes
fixed procedures, modern Al systems produce novel outputs that
require domain-specific expertise to evaluate. A code generation
tool may produce syntactically valid but semantically incorrect
code; a diagnostic Al may suggest a plausible but wrong diagnosis.
Detecting such errors requires the very skills that Al assistance
may erode—creating a potentially self-reinforcing deskilling trap.

We formalize this phenomenon through a dynamical systems
model that captures five interacting processes: (1) skill growth
through deliberate practice, (2) skill decay from disuse when tasks
are offloaded to Al, (3) partial skill maintenance from reviewing
AT outputs, (4) metacognitive calibration evolution, and (5) error
detection as a function of the skill-difficulty gap. Our contributions
are:

e A formal dynamical model of supervisory skill evolution
under Al assistance that identifies deskilling trap conditions
(Section 2).

e Computational experiments across four professional do-
mains revealing domain-specific vulnerability patterns and
a reliability paradox where higher Al reliability increases
deskilling risk (Section 3).

e Systematic comparison of four mitigation interventions,
demonstrating that scaffolded autonomy is the most effec-
tive, achieving near-complete skill preservation (Section 3).

e Evidence of a stark generational asymmetry between pre-
AT and post-Al cohorts with implications for workforce
training policy (Section 3).

1.1 Related Work

Skill acquisition and decay. The cognitive science of skill develop-
ment, from Fitts and Posner’s stage theory [11] through Anderson’s
ACT-R framework [1], establishes that skills are built through de-
liberate practice [10] and decay without use [2]. Our model builds
on these foundations, using logistic skill growth and exponential
decay as established functional forms.
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Al and learning. Recent empirical work has begun to document
AT’s effects on learning. Bastani et al. [4] found that students us-
ing GPT-4 for practice performed worse on subsequent unassisted
assessments, providing direct evidence that Al assistance can hin-
der skill formation. Doshi and Hauser [8] showed that while AI
enhances individual creative output, it reduces collective diversity—
suggesting that Al assistance may narrow the distribution of human
capabilities.

Automation and human factors. The human factors literature
on automation provides the theoretical foundation for our work.
Lee and See [13] established that trust in automation is a dynamic
process that depends on reliability, predictability, and experience.
Our model incorporates these insights through the endogenous
reliance mechanism. The broader concern about cognitive risks
from AI dependence is discussed in [18], while domain-specific
effects in software development are examined in [6, 17]. Learning
effects from Al tool experience, including difficulties in disentan-
gling genuine skill development from tool-dependent performance,
are explored in [19].

The Dunning-Kruger connection. Kruger and Dunning [12] showed
that individuals with low competence in a domain tend to overes-
timate their ability, precisely because they lack the metacognitive
skill to recognize their deficiency. Our model formalizes this insight:
when both skill and metacognition fall below critical thresholds,
the worker is trapped because they cannot recognize their inability
to supervise.

2 METHODS
2.1 Model Overview

We model a worker whose supervisory skill s(¢) € [0,1] and
metacognitive calibration m(t) € [0, 1] evolve over discrete time
steps (each representing one week). The worker handles N = 20
tasks per time step, delegating a fraction r(t) € [0, 0.95] to an Al
system. The model consists of three coupled dynamical equations
governing skill, metacognition, and reliance.

2.2 Skill Dynamics

The skill level evolves as:

é=0(~(1—r)~s(1—s)—ﬁ-r-s+r-oz-r~s(1—s)/2 (1)
dt S NS ———

growth decay transfer

where a is the skill growth rate from unassisted practice, f is the
decay rate from disuse, 7 is the review transfer coefficient capturing
partial learning from reviewing Al outputs, and r is the Al reliance
fraction. The growth term uses a logistic form: skill grows fastest at
intermediate levels and saturates near the extremes. The decay term
is proportional to both current skill and reliance: more delegation
causes faster decay. The transfer term captures that reviewing Al
outputs provides some (reduced) learning signal.

Anon.

2.3 Error Detection

The probability that a worker detects an Al error on a task of
difficulty d is:

P(detect | s,m,d) = N - (0.5 +0.5m) (2)

+ e~ K(s—=d)

where x = 5 + 10m controls the sigmoid steepness. The first factor
captures the domain skill requirement: detection is likely when
skill exceeds task difficulty and unlikely otherwise. The second
factor captures metacognitive vigilance: even with sufficient skill,
a worker who rubber-stamps Al outputs (low m) will miss errors.

2.4 Metacognition Dynamics
Metacognitive calibration evolves as:
dm

E=0.02~eexp-(1—m)—0.01~r-pA1-m (3)

calibration signal complacency

where eeyp is the error exposure rate (fraction of Al-handled tasks
containing errors that the worker encounters) and paj is the Al
reliability. Metacognition grows when the worker encounters and
processes errors, and decays through complacency when Al relia-
bility is high and reliance is strong.

2.5 Endogenous Reliance
Al reliance adapts based on perceived Al quality:

dr R
- =002 (qar-05) (4)

where §ar = 1 — edetected/max(Nr, 1) is the perceived quality based
on detected errors. This creates a positive feedback loop: when few
errors are detected (either because Al is reliable or because the
worker cannot detect errors), reliance increases, further reducing
practice opportunities.

2.6 Deskilling Trap Definition
We define a deskilling trap as a state where:

s(T) <03 and m(T) < 0.3 (5)

at the end of the simulation (T = 200 weeks). This captures the
condition where the worker both (a) lacks the skill to supervise Al
outputs effectively and (b) lacks the metacognitive awareness to
recognize their deficiency.

2.7 Domain Configuration

We instantiate the model across four professional domains with
parameters calibrated from the human factors literature (Table 1).
Each domain differs in error severity, Al reliability, task novelty
rate, and skill dynamics parameters.

2.8 Interventions
We evaluate four candidate interventions:
(1) Scheduled Practice: 20% of time is mandatory unassisted
practice, regardless of Al reliance level.

(2) Scaffolded Autonomy: Al reduces its assistance as worker
skill grows: regg = r - (1 — 0.5s).
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Table 1: Domain configuration parameters. Error severity re-
flects the cost of undetected errors (0=benign, 1=catastrophic).
Al reliability is the baseline probability of correct Al output.
Task novelty rate is the fraction of tasks outside the Al train-
ing distribution.

Parameter Software Medicine Finance Aviation
Error severity 0.30 0.90 0.60 0.95
Al reliability 0.85 0.90 0.80 0.95
Novelty rate 0.25 0.15 0.30 0.05
Feedback delay 5.0 15.0 10.0 0.5
Growth rate a 0.05 0.03 0.04 0.04
Decay rate f§ 0.02 0.015 0.025 0.03
Transfer rate 7 0.30 0.20 0.25 0.15

(3) Adversarial Training: Al deliberately inserts detectable
errors at a 10% rate to maintain vigilance.

(4) Explainability Requirement: Worker must explain why
Al output is correct, doubling the transfer learning rate 7.

2.9 Experimental Design
We conduct four experiments:

e Experiment 1: Deskilling trap identification across all four
domains with three experience levels (novice, intermediate,
expert).

e Experiment 2: Intervention comparison for a novice soft-
ware engineer across 10 random seeds.

o Experiment 3: Reliability threshold sweep from 0.50 to
0.99 (20 points) to identify the critical reliability level above
which deskilling traps emerge.

o Experiment 4: Generational asymmetry comparison be-
tween pre-Al workers (high initial skill) and post-Al work-
ers (low initial skill, high initial reliance) over 300 weeks.

All simulations use N = 20 tasks per time step, with task difficul-
ties drawn from a Beta(2,5) distribution. Results are reproducible
via fixed random seeds.

3 RESULTS
3.1 Experiment 1: Deskilling Traps Across
Domains

Table 2 summarizes the outcomes of 200-week simulations across
four domains and three experience levels. The most striking finding
is that all experience levels in aviation enter deskilling traps,
including experts who begin with skill level 0.80. In aviation, the
combination of very high Al reliability (0.95) and high skill decay
rate (0.03) creates a regime where the error signal is too sparse to
sustain skill, and the low review transfer rate (0.15) means that
passive monitoring provides insufficient learning.

Medicine shows a mixed pattern: novice physicians enter the
deskilling trap (s = 0.047, m = 0.300), but intermediate and expert
physicians maintain metacognition above the threshold despite
severe skill decay. Finance produces the lowest final skills across
all levels but avoids traps because metacognition remains relatively
high (m > 0.45), likely due to the higher task novelty rate (0.30)
providing more error signals.

Conference’17, July 2017, Washington, DC, USA

Table 2: Experiment 1: Final outcomes after 200 weeks of AI-
assisted work. Deskilling traps (skill < 0.3 and metacognition
< 0.3) are marked with {. All workers begin with Al reliance >
0.50 and converge to maximum reliance (0.95) by simulation
end.

291

292

293

294

295

296

Domain Level Final Skill Final Meta. Detect Rate Tetal Harn
3*Software ~ Novice 0.048 0.390 0.262 2%866.6
Intermediate 0.075 0.404 0.408 299544
Expert 0.106 0.429 0.542 30043.8
3*Medicine Novice' 0.047 0.300 0.255 24,8
Intermediate 0.076 0.322 0.355 %1169
Expert 0.106 0.344 0.472 30389.4
304
3*Finance Novice 0.012 0.458 0.195 305173.5
Intermediate 0.022 0.475 0.277 - 1674
Expert 0.040 0.490 0.444 927.2
3*Aviation  Novice' 0.010 0.187 0.213 :508 65.5
Intermediate 0.010 0.218 0.159 200 71.3
Expert' 0.010 0.242 0.357 ;m
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Figure 1: Supervisory skill trajectories over 200 weeks across
four domains and three experience levels (novice, intermedi-
ate, expert). The dashed red line at s = 0.3 marks the supervi-
sory competence threshold. All trajectories decline, but the
rate and final level depend on domain characteristics. Avia-
tion shows the most severe decline due to high Al reliability
and low review transfer.

Figure 1 shows the skill trajectories across domains. In all cases,
skill declines monotonically once Al reliance saturates, but the rate
and asymptotic behavior differ substantially by domain.

3.2 Experiment 2: Intervention Effectiveness

Table 3 presents the intervention comparison results for a novice
software engineer, averaged over 10 random seeds. Scaffolded au-
tonomy dramatically outperforms all other interventions, achieving
a final skill of 0.983 + 0.001 compared to 0.048 + 0.000 under no
intervention—a 20-fold improvement. The mechanism is clear: by
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Deskilling Risk Across Domains and Experience Levels (* = trapped)

Final Skill Level Total Accumulated Harm

10

Software Engineering Software Engineering

Medicine

Medicine

Finance

Finance

Aviation Aviation

Novice Intermediate  Expert

Novice  Intermediate  Expert

Figure 2: Deskilling risk heatmap across domains and expe-
rience levels. Left: final skill level (green = high, red = low).
Right: total accumulated harm over 200 weeks. Asterisks (*)
mark deskilling trap states. Aviation is uniquely vulnerable
across all experience levels, while finance accumulates the
most harm due to moderate Al reliability and high task nov-
elty.

Table 3: Experiment 2: Intervention comparison for a novice
software engineer (10 seeds). Scaffolded autonomy achieves
dramatically higher skill and lower harm than all alterna-
tives.

Intervention Final Skill = Detection Rate Total Harm
No Intervention 0.048 + 0.000 0.234 +0.012 67.1+1.7
Scheduled Practice 0.125 £+ 0.000 0.295 £ 0.013 63.5+1.7
Scaffolded Autonomy  0.983 + 0.001 0.684 + 0.034 8.3+0.7
Adversarial Training ~ 0.048 + 0.000 0.234 £ 0.012 60.1+1.5
Explainability Req. 0.126 + 0.000 0.303 +0.017 62.9+2.3

Effect of Interventions on Novice Software Engineer

Skill Level Metacognitive Calibration Cumulative Harm

Cumulative Harm

o 0 100 150 200 o 50 100 150 200 ] 50 100 150 200
Time (weeks) Time (weeks) Time (weeks)

Figure 3: Intervention trajectories for a novice software engi-
neer over 200 weeks. Left: skill level. Center: metacognitive
calibration. Right: cumulative harm. Scaffolded autonomy
(green) is the only intervention that reverses the deskilling
trajectory, achieving near-expert skill levels. The remaining
interventions slow but do not prevent skill decline.

reducing Al assistance as skill grows, scaffolded autonomy restores
the practice signal that drives skill acquisition.

Scheduled practice and the explainability requirement produce
modest improvements (skill approximately 0.125 vs. 0.048), while
adversarial training improves metacognition (0.448 vs. 0.388) and
reduces harm but does not substantively improve skill level. The
key insight is that adversarial error injection provides a calibration
signal but does not restore the practice volume needed for skill
growth.

Anon.

Intervention Effectiveness: Novice Software Engineer (10 seeds)

Final Skill Final Avg Detection Rate

Final Skill

Final Metacognition

o
o L
S g o
Ea 2

W

Figure 4: Bar chart comparison of intervention outcomes
(mean =* standard deviation across 10 seeds). Scaffolded au-
tonomy is dramatically superior across all three metrics: final
skill, metacognition, and error detection rate.

The Reliability Paradox: Higher AI Reliability Increases Deskilling Risk
0.6
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0.94)
= H F0.8 o
4 + ks
: ~
. 0.6 [:“
= 031 EEE >
5 =
= : 0.4 -4
T 0.2 + 4
= a
0.1 o2
0.0 T T T T T - T 0.0
0.5 0.6 0.7 0.8 0.9 1.0

Al Reliability

Figure 5: The reliability paradox: higher AI reliability para-
doxically increases deskilling risk. Blue line (left axis): mean
final skill level decreases as Al reliability increases. Red bars
(right axis): deskilling trap rate. A critical threshold emerges
at reliability ~ 0.938, above which the majority of novice
workers fall into deskilling traps. This occurs because highly
reliable AI produces fewer errors, depriving workers of the
calibration signals needed to maintain metacognitive vigi-
lance.

Figure 3 shows the full trajectories, and Figure 4 presents the ag-
gregated bar comparison with error bars. The scaffolded autonomy
trajectory shows a distinctive pattern: initial skill decline is similar
to other conditions, but as the Al reduces its assistance in response
to growing skill, a virtuous cycle emerges where increasing practice
drives faster skill growth.

3.3 Experiment 3: The Reliability Paradox

Figure 5 reveals a counterintuitive finding: higher AI reliability
increases deskilling risk. As Al reliability increases from 0.50 to
0.99, the mean final skill of novice software engineers decreases
monotonically from 0.053 to 0.047. More critically, deskilling traps
emerge abruptly at a reliability threshold of approximately 0.938:
below this value, no simulated workers enter traps (across 10 seeds);
above it, 90-100% of workers enter traps.

The mechanism is twofold. First, more reliable Al produces fewer
errors, so workers encounter fewer calibration opportunities, and
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Generational Asymmetry: Pre-Al vs. Post-AI Workers

Skill Trajectories itive Cali
08 10

Supervisory Detection Rate

07 — PostAl Cohort

Metacognition

Error Detection Rate
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Figure 6: Generational asymmetry over 300 weeks. Pre-
Al workers (blue, initial skill 0.75) maintain higher skill,
metacognition, and detection rates than post-Al workers (red,
initial skill 0.20) throughout the simulation. By week 90, the
pre-Al cohort’s skill drops below the supervision threshold
(0.3), while the post-Al cohort falls below it by week 20. The
metacognition gap persists, with pre-Al workers retaining
substantially better self-assessment calibration.

metacognition decays through complacency. Second, fewer detected
errors increase perceived Al quality, driving reliance upward, fur-
ther reducing practice opportunities. This creates a vicious cycle
that the worker cannot escape once metacognition drops below the
self-awareness threshold.

This finding has profound implications: the most dangerous
Al systems for human skill maintenance are not the unreliable
ones (which force human engagement) but the highly reliable ones
(which enable complete disengagement). This is precisely the para-
dox identified by Bainbridge [3]: the more reliable the automation,
the less prepared the human operator when it fails.

3.4 Experiment 4: Generational Asymmetry

Figure 6 compares two cohorts over 300 weeks: pre-Al workers (ini-
tial skill 0.75, began career without AI) and post-Al workers (initial
skill 0.20, always had Al). The pre-Al cohort begins with substan-
tially higher skill and maintains a persistent advantage throughout
the simulation, despite both cohorts experiencing continuous skill
decline.

At week 90, the pre-Al cohort’s skill crosses the 0.3 supervision
threshold (0.294), while the post-Al cohort falls below this threshold
by week 20 (having started below it). The metacognition gap is
equally stark: the pre-Al cohort maintains metacognition above
0.40 throughout, while the post-AlI cohort hovers around 0.38-0.40
but with lower absolute skill, producing substantially lower error
detection rates.

By week 290, the pre-Al cohort has skill 0.035 with metacognition
0.398, while the post-Al cohort has skill 0.012 with metacognition
0.385. Although both trajectories ultimately converge toward low
skill, the pre-AI cohort maintains approximately 3x higher skill
even after 300 weeks, suggesting that the initial skill buffer ac-
quired before AI adoption provides lasting (though diminishing)
supervisory advantage.

This asymmetry has direct workforce implications: organizations
cannot rely on a new generation of “Al-native” workers to develop
supervisory skills organically. Deliberate training programs that
include unassisted practice are essential for workers who have
always had Al available.
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4 DISCUSSION

4.1 Key Findings

Our simulation study produces five principal findings with policy
relevance:

1. Deskilling traps are real and domain-dependent. The
model identifies specific parameter regimes where workers lose
both competence and awareness of incompetence. Aviation is uniquely
vulnerable: all experience levels enter traps due to the combina-
tion of very high Al reliability (reducing error signals) and high
skill decay rate (from lack of manual practice). Medicine shows
intermediate vulnerability, with novices particularly at risk.

2. The reliability paradox. More reliable Al is paradoxically
more dangerous for skill maintenance. A critical threshold exists (ap-
proximately 0.938 for our software engineering calibration) above
which deskilling traps become nearly certain. This directly chal-
lenges the intuition that better Al is uniformly beneficial.

3.Scaffolded autonomy is dramatically effective. Among the
four interventions tested, scaffolded autonomy—where Al reduces
its assistance as worker skill grows—produces a 20-fold improve-
ment in final skill level. The key mechanism is restoring the practice
signal: by forcing graduated independence, the intervention breaks
the positive feedback loop between high reliance and skill decay.

4. Adversarial training improves metacognition but not
skill. Deliberately injecting errors improves metacognitive calibra-
tion (0.448 vs. 0.388) and reduces total harm by 10.4%, but does not
restore the practice volume needed for skill growth. This suggests
that error detection and skill acquisition are partially independent
processes.

5. Generational asymmetry is persistent. Workers who devel-
oped skills before Al adoption maintain approximately 3x higher
skill than “Al-native” workers even after 300 weeks of identical
conditions. This gap, while narrowing over time, suggests that pre-
AI skill acquisition provides a lasting supervisory advantage that
cannot be replicated by Al-assisted experience alone.

4.2 Limitations

Our model makes several simplifying assumptions. First, domain
parameters are calibrated from literature estimates rather than em-
pirical measurement; the precise location of deskilling thresholds
depends on these calibrations. Second, the model assumes homoge-
neous workers within each experience category; real workforces
exhibit substantial individual variation in learning rates, metacog-
nitive ability, and disposition toward Al reliance. Third, the model
treats Al capability as static; in practice, Al systems improve over
time, which may shift the supervisory challenge. Fourth, social
and organizational factors (incentives, peer learning, institutional
memory) are not modeled but likely play significant roles. Finally,
as a computational model, our results generate predictions that
require empirical validation through longitudinal studies.

4.3 Policy Implications

For organizations deploying AI: implement scaffolded autonomy
where Al gradually reduces assistance as workers demonstrate
competence. At minimum, mandate periodic unassisted assessment
to monitor supervisory skill.

523
524
525
526
527

529

579



588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Conference’17, July 2017, Washington, DC, USA

For training program designers: include deliberate unassisted
practice modules, especially for workers who entered the profession
with Al assistance. The generational asymmetry finding suggests
that “Al-native” workers need qualitatively different training from
those who developed skills before Al adoption.

For regulators in safety-critical domains: the aviation results
are particularly concerning. Current regulations mandate man-
ual flying proficiency checks for pilots using autopilot; analogous
requirements may be needed in other domains where Al is sup-
planting human judgment (e.g., medical diagnosis, financial risk
assessment). The reliability paradox suggests that regulatory at-
tention should focus precisely on the most reliable Al systems, as
these pose the greatest deskilling risk.

5 CONCLUSION

We have presented a formal dynamical systems model of supervi-
sory skill evolution under Al assistance and used it to investigate the
open question of whether Al assistance hinders the development of
skills needed to supervise automated tasks. Our computational ex-
periments reveal that the answer is conditionally affirmative: under
realistic parameter regimes, Al assistance produces deskilling traps
where workers lose both supervisory competence and awareness of
their incompetence. The severity depends on domain characteris-
tics, with high-reliability Al domains being paradoxically the most
dangerous.

The most promising mitigation is scaffolded autonomy, which
achieves near-complete skill preservation by coupling Al assistance
reduction to skill growth. This finding points toward a design prin-
ciple for human-AI systems: the Al should be designed not only
to maximize immediate task performance but also to maintain the
human skills needed for oversight.

Our model generates testable predictions about deskilling dy-
namics, reliability thresholds, and intervention effectiveness that
can be evaluated through longitudinal field studies. We hope this
work motivates such empirical investigations and informs the de-
sign of Al deployment policies that account for long-term human
skill sustainability.

All simulation code is available for reproducibility. The model
parameters can be recalibrated as empirical data on skill dynamics
under Al assistance becomes available.
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